Intensity-curvature functional-based filtering in image space and k-space: Applications in magnetic resonance imaging of the human brain

High Frequency Pub Date : 2019-03-18 DOI:10.1002/hf2.10031
Carlo Ciulla
{"title":"Intensity-curvature functional-based filtering in image space and k-space: Applications in magnetic resonance imaging of the human brain","authors":"Carlo Ciulla","doi":"10.1002/hf2.10031","DOIUrl":null,"url":null,"abstract":"<p>This research examines the use of the intensity-curvature functional (ICF) as filter in image space and in k-space. The novelty of this study is three-folded: (a) The evidence that the ICF calculated from three additional (International Journal of Imaging Systems and Technology, 28, 2018, 54) two-dimensional model polynomial functions is an image space filter; (b) An additional (The use of the intensity-curvature functional as k-space filter: Applications in magnetic resonance imaging of the human brain, 2018) ICF-based k-space filtering technique applicable to two-dimensional magnetic resonance images; (c) Results obtained through the calculation of the ICF of the trivariate cubic Lagrange model polynomial function (LGR3D). Although ICF-based k-space filtering delivers clear and well-defined images, ICF-based image space filtering remains superior when reconstructing vessel images in T2 MRI. The ICF of the LGR3D function provides sharp images too.</p>","PeriodicalId":100604,"journal":{"name":"High Frequency","volume":"2 1","pages":"48-60"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/hf2.10031","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Frequency","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hf2.10031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This research examines the use of the intensity-curvature functional (ICF) as filter in image space and in k-space. The novelty of this study is three-folded: (a) The evidence that the ICF calculated from three additional (International Journal of Imaging Systems and Technology, 28, 2018, 54) two-dimensional model polynomial functions is an image space filter; (b) An additional (The use of the intensity-curvature functional as k-space filter: Applications in magnetic resonance imaging of the human brain, 2018) ICF-based k-space filtering technique applicable to two-dimensional magnetic resonance images; (c) Results obtained through the calculation of the ICF of the trivariate cubic Lagrange model polynomial function (LGR3D). Although ICF-based k-space filtering delivers clear and well-defined images, ICF-based image space filtering remains superior when reconstructing vessel images in T2 MRI. The ICF of the LGR3D function provides sharp images too.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
图像空间和k空间中基于强度曲率函数的滤波:在人脑磁共振成像中的应用
本研究探讨了在图像空间和k空间中使用强度曲率泛函(ICF)作为滤波器。本研究的新颖性在于三个方面:(a)从三个额外的(International Journal of Imaging Systems and Technology, 28,2018,54)二维模型多项式函数计算的ICF是图像空间滤波器的证据;(b)附加的(使用强度曲率函数作为k空间滤波器:在人脑磁共振成像中的应用,2018)适用于二维磁共振图像的基于icf的k空间滤波技术;(c)三变量三次拉格朗日模型多项式函数(LGR3D)的ICF计算结果。尽管基于icf的k空间滤波可以提供清晰、定义明确的图像,但在重建T2 MRI血管图像时,基于icf的图像空间滤波仍然具有优势。LGR3D功能的ICF也提供了清晰的图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information The dixie cup problem and FKG inequality Market making under a weakly consistent limit order book model Barndorff-Nielsen and Shephard model for hedging energy with quantity risk On multilateral incomplete information decision models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1