A semi analytic method for the analysis of the symmetric hydroelastic response of a container ship under slamming and green water loads

D. Sengupta, Tushar Kanti Show, S. Hirdaris, R. Datta
{"title":"A semi analytic method for the analysis of the symmetric hydroelastic response of a container ship under slamming and green water loads","authors":"D. Sengupta, Tushar Kanti Show, S. Hirdaris, R. Datta","doi":"10.1177/14750902231165808","DOIUrl":null,"url":null,"abstract":"This paper presents a semi analytic time domain method for the analysis of the symmetric hydroelastic response of a container ship subject to slamming and green water loads. An Impulse Response Function (IRF) is adopted for the calculation of radiation, diffraction and wave excitation forces. Local hydrodynamic forces associated with green water on decks and slamming loads are respectively modelled by the Buchner’s Dam Break Model and a Generalised Wagner Model. The structural responses are captured by Euler-Bernoulli beam theory and solved by the modal superposition method. The Duhamel Integral technique is used to evaluate the dynamic response. A parametric study demonstrates how external forces may affect the global wave induced vertical bending moments and shear forces. Numerical simulations are compared against a hybrid method that combines computational fluid dynamics, boundary element and finite element methods for low to medium frequency induced dynamic response. It is concluded that the proposed semi analytic methodology is fast and accurate and may be useful at concept ship design stage.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2023-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14750902231165808","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 3

Abstract

This paper presents a semi analytic time domain method for the analysis of the symmetric hydroelastic response of a container ship subject to slamming and green water loads. An Impulse Response Function (IRF) is adopted for the calculation of radiation, diffraction and wave excitation forces. Local hydrodynamic forces associated with green water on decks and slamming loads are respectively modelled by the Buchner’s Dam Break Model and a Generalised Wagner Model. The structural responses are captured by Euler-Bernoulli beam theory and solved by the modal superposition method. The Duhamel Integral technique is used to evaluate the dynamic response. A parametric study demonstrates how external forces may affect the global wave induced vertical bending moments and shear forces. Numerical simulations are compared against a hybrid method that combines computational fluid dynamics, boundary element and finite element methods for low to medium frequency induced dynamic response. It is concluded that the proposed semi analytic methodology is fast and accurate and may be useful at concept ship design stage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用半解析法分析了集装箱船在猛烈撞击和绿水载荷作用下的对称水弹性响应
本文提出了一种半解析时域方法,用于分析集装箱船在撞击和绿水载荷作用下的对称水弹性响应。采用脉冲响应函数(IRF)计算辐射、衍射和波激力。与甲板上的绿水和撞击载荷相关的局部水动力分别由Buchner的溃坝模型和广义Wagner模型建模。结构响应用欧拉-伯努利梁理论捕获,用模态叠加法求解。采用Duhamel积分技术对系统的动态响应进行了计算。参数研究表明,如何外力可能影响全局波诱导的垂直弯矩和剪力。数值模拟与计算流体力学、边界元法和有限元法相结合的低中频动力响应混合方法进行了比较。结果表明,所提出的半解析方法快速、准确,可用于概念船设计阶段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
11.10%
发文量
77
审稿时长
>12 weeks
期刊介绍: The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.
期刊最新文献
Integrated design method for protection against vibration of offshore platform plate structure A grouping module assessment method for ocean engineering systems: Subsea tree system as a case Effect of pre-swirl stator angles on broadband noise considering hydrodynamic performance of pump-jet propeller Effect of preload scatter on fatigue life of subsea pipeline connector bolts located at suspended span section A benchmark study on the energy efficiency and environmental impacts of alternative fuels in gulet-type sailing yachts
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1