Elasticity of Highly Entangled Polymer Networks and Gels: Review of Models and Theory of Nonaffine Deformations

IF 1.6 4区 化学 Q4 POLYMER SCIENCE Polymer Science, Series C Pub Date : 2023-08-09 DOI:10.1134/S1811238223700236
S. V. Panyukov
{"title":"Elasticity of Highly Entangled Polymer Networks and Gels: Review of Models and Theory of Nonaffine Deformations","authors":"S. V. Panyukov","doi":"10.1134/S1811238223700236","DOIUrl":null,"url":null,"abstract":"<p>The main models of phantom and topologically entangled polymer networks are surveyed. A theory of anisotropic and nonaffine deformation of both swollen and deswollen (with partial solvent removal) strongly entangled polymer networks in athermal and θ-solvents has been developed. It is shown that under weak anisotropic deformations of the deswollen network, the entanglement tube consists of fractal loopy globules. In a θ-solvent, slight deformations of the network lead to a decrease in the overlap of loopy globules without changing their sizes. Deformations of swollen networks, as well as strong deformations of deswollen networks, are described in terms of the slip-tube model. An effective Hamiltonian has been derived that determines the entropy of fractal loopy globules. Based on the Hamiltonian, it is shown that topological constraints can be described using the polymer–quantum diffusion analogy. The connection between topological and quantum entanglements is demonstrated.</p>","PeriodicalId":740,"journal":{"name":"Polymer Science, Series C","volume":"65 1","pages":"27 - 45"},"PeriodicalIF":1.6000,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Science, Series C","FirstCategoryId":"1","ListUrlMain":"https://link.springer.com/article/10.1134/S1811238223700236","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

The main models of phantom and topologically entangled polymer networks are surveyed. A theory of anisotropic and nonaffine deformation of both swollen and deswollen (with partial solvent removal) strongly entangled polymer networks in athermal and θ-solvents has been developed. It is shown that under weak anisotropic deformations of the deswollen network, the entanglement tube consists of fractal loopy globules. In a θ-solvent, slight deformations of the network lead to a decrease in the overlap of loopy globules without changing their sizes. Deformations of swollen networks, as well as strong deformations of deswollen networks, are described in terms of the slip-tube model. An effective Hamiltonian has been derived that determines the entropy of fractal loopy globules. Based on the Hamiltonian, it is shown that topological constraints can be described using the polymer–quantum diffusion analogy. The connection between topological and quantum entanglements is demonstrated.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高度纠缠的聚合物网络和凝胶的弹性:非仿射变形模型和理论综述
综述了幻影和拓扑纠缠聚合物网络的主要模型。在非热和θ-溶剂中发展了一种强纠缠聚合物网络的各向异性和非仿射变形理论。结果表明,在弱各向异性变形条件下,溶胀网络的纠缠管由分形环状球组成。在θ-溶剂中,网络的轻微变形导致环状球的重叠减少而不改变其大小。膨胀网络的变形,以及膨胀网络的强烈变形,用滑移管模型来描述。导出了一个有效的哈密顿量,用于确定分形环球的熵。基于哈密顿量,证明拓扑约束可以用聚合物-量子扩散类比来描述。证明了拓扑纠缠和量子纠缠之间的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Polymer Science, Series C
Polymer Science, Series C 工程技术-高分子科学
CiteScore
3.00
自引率
4.50%
发文量
21
审稿时长
>12 weeks
期刊介绍: Polymer Science, Series C (Selected Topics) is a journal published in collaboration with the Russian Academy of Sciences. Series C (Selected Topics) includes experimental and theoretical papers and reviews on the selected actual topics of macromolecular science chosen by the editorial board (1 issue a year). Submission is possible by invitation only. All journal series present original papers and reviews covering all fundamental aspects of macromolecular science. Contributions should be of marked novelty and interest for a broad readership. Articles may be written in English or Russian regardless of country and nationality of authors. All manuscripts are peer reviewed
期刊最新文献
On the 100th Anniversary of Nikolai Sergeevich Enikolopov (1924–1993) Morphology and Physical-Chemical Properties of Composite Materials Based on Polyolefins and Chitosan Self-Healing Polyurethanes Based on Natural Raw Materials Features of Polymer Modification in a Supercritical Carbon Dioxide Environment Modern Technologies for Creating Powdered Cellulose and Nanocellulose Composites
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1