Global asymptotic stability of a general class of Hopfield neural networks with time-varying delays

Chaojin Fu, Dahu Li, Shuping Chen
{"title":"Global asymptotic stability of a general class of Hopfield neural networks with time-varying delays","authors":"Chaojin Fu, Dahu Li, Shuping Chen","doi":"10.1109/ICIST.2011.5765240","DOIUrl":null,"url":null,"abstract":"In this paper, we address the problem of a unique equilibrium point and present global asymptotic stability for Hopfield neural networks with time-varying delays. By constructing a Lyapunov functional, a new stability criterion for the network is established in terms of differential inequality technique. Finally, an illustrative numerical example is included to show the effectiveness of proposed criterion.","PeriodicalId":6408,"journal":{"name":"2009 International Conference on Environmental Science and Information Application Technology","volume":"19 1","pages":"217-220"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Environmental Science and Information Application Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIST.2011.5765240","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we address the problem of a unique equilibrium point and present global asymptotic stability for Hopfield neural networks with time-varying delays. By constructing a Lyapunov functional, a new stability criterion for the network is established in terms of differential inequality technique. Finally, an illustrative numerical example is included to show the effectiveness of proposed criterion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一类具有时变时滞的Hopfield神经网络的全局渐近稳定性
本文研究了具有时变时滞的Hopfield神经网络的唯一平衡点问题,并给出了全局渐近稳定性。通过构造Lyapunov泛函,利用微分不等式技术建立了一个新的网络稳定性判据。最后,通过一个算例说明了所提准则的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Applications of oriental systems methodology to system shortest path programming visualization research process ZigBee based wireless sensor networks for service robot intelligent space An adaptive control of Web QoS based on online identification Extended (G′ over G)-expansion method for Relativistic Toda Lattice system The study of Localization algorithm based on RSSI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1