{"title":"Optimization of AL6061-T6 Tube End Forming Process Using Response Surface Method","authors":"A. Shaaban, A. Elsabbagh","doi":"10.1155/2021/5532276","DOIUrl":null,"url":null,"abstract":"Tube end closing is a metal forming process that replaces welding processes while closing tubes ends. It depends on deforming a rotating tube using a roller, and therefore, it is also called tube end spinning. The process involves many parameters like contact depth, roller inclination angle, roller diameter, mandrel curvature, and tube rotational speed. This study develops a finite element model (FE-model) for this process and validates it through experimental results. The numerical and experimental results have shown minor deviation of 1.87%. The FE-model is then employed to carry out a statistical analysis based on the response surface method (RSM). The analysis of variance (ANOVA) and regression analysis have proved the accuracy of the obtained mathematical model. The contact depth has proved to have the most significant effect in the process responses, while the roller diameter has the least effect. Finally, an optimization analysis is carried out to select the finest conditions for the process.","PeriodicalId":45541,"journal":{"name":"Modelling and Simulation in Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modelling and Simulation in Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2021/5532276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 1
Abstract
Tube end closing is a metal forming process that replaces welding processes while closing tubes ends. It depends on deforming a rotating tube using a roller, and therefore, it is also called tube end spinning. The process involves many parameters like contact depth, roller inclination angle, roller diameter, mandrel curvature, and tube rotational speed. This study develops a finite element model (FE-model) for this process and validates it through experimental results. The numerical and experimental results have shown minor deviation of 1.87%. The FE-model is then employed to carry out a statistical analysis based on the response surface method (RSM). The analysis of variance (ANOVA) and regression analysis have proved the accuracy of the obtained mathematical model. The contact depth has proved to have the most significant effect in the process responses, while the roller diameter has the least effect. Finally, an optimization analysis is carried out to select the finest conditions for the process.
期刊介绍:
Modelling and Simulation in Engineering aims at providing a forum for the discussion of formalisms, methodologies and simulation tools that are intended to support the new, broader interpretation of Engineering. Competitive pressures of Global Economy have had a profound effect on the manufacturing in Europe, Japan and the USA with much of the production being outsourced. In this context the traditional interpretation of engineering profession linked to the actual manufacturing needs to be broadened to include the integration of outsourced components and the consideration of logistic, economical and human factors in the design of engineering products and services.