Food web complexity enhances community stability and climate regulation in a geophysiological model

IF 2.3 4区 地球科学 Q3 METEOROLOGY & ATMOSPHERIC SCIENCES Tellus Series B-Chemical and Physical Meteorology Pub Date : 1999-09-01 DOI:10.3402/TELLUSB.V51I4.16489
S. Harding
{"title":"Food web complexity enhances community stability and climate regulation in a geophysiological model","authors":"S. Harding","doi":"10.3402/TELLUSB.V51I4.16489","DOIUrl":null,"url":null,"abstract":"A central debate in community ecology concerns the relationship between the complexity of communities and their stability. How does the richness of food web structures affect their resistance and resilience to perturbation? Most mathematical models of communities have shown that stability declines as complexity increases but so far, modellers have not included the material environment in their calculations. Here an otherwise conventional community ecology model is described, which includes feedback between the biota and their climate. This “geophysiological” model is stable in the sense that it resists perturbation. The more complex the community included in the model, the greater its stability in terms of both resistance to perturbation and rate of response to perturbation. This is a realistic way to model the naturalworld because organisms cannot avoid feedback to and from their material environment. DOI: 10.1034/j.1600-0889.1999.t01-3-00006.x","PeriodicalId":54432,"journal":{"name":"Tellus Series B-Chemical and Physical Meteorology","volume":"38 1","pages":"815-829"},"PeriodicalIF":2.3000,"publicationDate":"1999-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tellus Series B-Chemical and Physical Meteorology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.3402/TELLUSB.V51I4.16489","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 20

Abstract

A central debate in community ecology concerns the relationship between the complexity of communities and their stability. How does the richness of food web structures affect their resistance and resilience to perturbation? Most mathematical models of communities have shown that stability declines as complexity increases but so far, modellers have not included the material environment in their calculations. Here an otherwise conventional community ecology model is described, which includes feedback between the biota and their climate. This “geophysiological” model is stable in the sense that it resists perturbation. The more complex the community included in the model, the greater its stability in terms of both resistance to perturbation and rate of response to perturbation. This is a realistic way to model the naturalworld because organisms cannot avoid feedback to and from their material environment. DOI: 10.1034/j.1600-0889.1999.t01-3-00006.x
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在地球生理模型中,食物网的复杂性增强了群落稳定性和气候调节
群落生态学的一个核心争论是关于群落的复杂性和稳定性之间的关系。食物网结构的丰富性如何影响它们对扰动的抵抗力和恢复力?大多数关于群落的数学模型表明,稳定性随着复杂性的增加而下降,但到目前为止,建模者还没有将物质环境纳入他们的计算中。这里描述了一个传统的群落生态学模型,它包括生物群和气候之间的反馈。这个“地球生理学”模型是稳定的,因为它能抵抗扰动。模型中包含的群落越复杂,其对扰动的抵抗力和对扰动的响应率就越稳定。这是一种模拟自然世界的现实方法,因为生物体无法避免来自其物质环境的反馈。DOI: 10.1034 / j.1600 0889.1999.t01 - 3 - 00006. x
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
3
期刊介绍: Tellus B: Chemical and Physical Meteorology along with its sister journal Tellus A: Dynamic Meteorology and Oceanography, are the international, peer-reviewed journals of the International Meteorological Institute in Stockholm, an independent non-for-profit body integrated into the Department of Meteorology at the Faculty of Sciences of Stockholm University, Sweden. Aiming to promote the exchange of knowledge about meteorology from across a range of scientific sub-disciplines, the two journals serve an international community of researchers, policy makers, managers, media and the general public.
期刊最新文献
A decadal inversion of CO2 using the Global Eulerian-Lagrangian Coupled Atmospheric model (GELCA): sensitivity to the ground-based observation network. In situ aerosol characterization at Cape Verde Part 2: Parametrization of relative humidity- and wavelength-dependent aerosol optical properties In situ aerosol characterization at Cape Verde. Part 1: Particle number size distributions, hygroscopic growth and state of mixing of the marine and Saharan dust aerosol Origin of CO2undersaturation in the western tropical Atlantic Can bottom-up ocean CO 2 fluxes be reconciled with atmospheric 13 C observations?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1