Combination of Harmony Search and Linear Discriminate Analysis to Improve Classification

Hossein Moeinzadeh, E. Asgarian, Mohammad Zanjani, Abdolazim Rezaee, Mojtaba Seidi
{"title":"Combination of Harmony Search and Linear Discriminate Analysis to Improve Classification","authors":"Hossein Moeinzadeh, E. Asgarian, Mohammad Zanjani, Abdolazim Rezaee, Mojtaba Seidi","doi":"10.1109/AMS.2009.125","DOIUrl":null,"url":null,"abstract":"An appropriate pre-processing algorithm in classification is not only of great importance with respect to classifier choice, but also would be more crucial. In this paper, a pre-processing step is proposed in order to increase accuracy of classification. The aim of this approach is finding a transformation matrix causes classes to be more discriminable by transforming data into the new space and consequently, increases the classification accuracy. This transformation matrix is computed through two methods based on linear discrimination. In the first method, we use class independent LDA to increase classification accuracy by finding a transformation that maximizes the between-class scatter and minimizes within-class scatter using a transformation matrix. Because LDA cannot obtain optimal transformation, in the second method, Harmony Search is used to increase performance of LDA. Obtained results show that utilization of these pre-processing causes increasing the accuracy of different classifiers.","PeriodicalId":6461,"journal":{"name":"2009 Third Asia International Conference on Modelling & Simulation","volume":"6 1","pages":"131-135"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Third Asia International Conference on Modelling & Simulation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AMS.2009.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

An appropriate pre-processing algorithm in classification is not only of great importance with respect to classifier choice, but also would be more crucial. In this paper, a pre-processing step is proposed in order to increase accuracy of classification. The aim of this approach is finding a transformation matrix causes classes to be more discriminable by transforming data into the new space and consequently, increases the classification accuracy. This transformation matrix is computed through two methods based on linear discrimination. In the first method, we use class independent LDA to increase classification accuracy by finding a transformation that maximizes the between-class scatter and minimizes within-class scatter using a transformation matrix. Because LDA cannot obtain optimal transformation, in the second method, Harmony Search is used to increase performance of LDA. Obtained results show that utilization of these pre-processing causes increasing the accuracy of different classifiers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合和谐搜索和线性判别分析改进分类
在分类中,一个合适的预处理算法不仅对分类器的选择非常重要,而且更为关键。为了提高分类精度,本文提出了一种预处理步骤。该方法的目的是找到一个转换矩阵,通过将数据转换到新的空间,使分类更容易辨别,从而提高分类精度。该变换矩阵通过两种基于线性判别的方法计算。在第一种方法中,我们使用类独立的LDA来提高分类精度,方法是找到一个使用变换矩阵最大化类间散点和最小化类内散点的变换。由于LDA无法获得最优变换,在第二种方法中,采用和声搜索来提高LDA的性能。结果表明,利用这些预处理方法可以提高不同分类器的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Transparent Classification Model Using a Hybrid Soft Computing Method Study on the Performance of Tag-Tag Collision Avoidance Algorithms in RFID Systems Cross Layer Design of Wireless LAN for Telemedicine Application Jawi Character Speech-to-Text Engine Using Linear Predictive and Neural Network for Effective Reading Advances in Supply Chain Simulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1