Effects of secondary carbide addition on the mechanical properties of (Ti1-xTMx)C-based 20Ni cermets (TM = V, Mo, and W): a study combining ab initio calculation and experimental results
Myungjae Kim, Hyo-Gyung Kim, Jin-Kyu Lee, Jihoo Kim, Sooah Kyung, J. Kwak, Jiwoong Kim
{"title":"Effects of secondary carbide addition on the mechanical properties of (Ti1-xTMx)C-based 20Ni cermets (TM = V, Mo, and W): a study combining ab initio calculation and experimental results","authors":"Myungjae Kim, Hyo-Gyung Kim, Jin-Kyu Lee, Jihoo Kim, Sooah Kyung, J. Kwak, Jiwoong Kim","doi":"10.1080/10667857.2023.2251293","DOIUrl":null,"url":null,"abstract":"ABSTRACT In recent years, significant efforts have been devoted towards the development of high-performance cermets with superior hardness and fracture toughness for engineering applications. In this study, a (Ti1-xTMx)C solid solution of a Ni cermet was prepared based on a combination of ab initio calculation and experimental results. The structural stability, mechanical properties, and microstructure of the cermet were investigated. A screening process was conducted using ab initio calculations to determine the optimal composition of (Ti1-xTMx)C (TM = V, Mo, and W) (x = 0–0.3125). The enhancement of the mechanical properties was analysed by calculating the electronic properties of the (Ti1-xTMx)C solid solutions. Additionally, we evaluated the powder morphology, microstructure, and mechanical properties of (Ti1-xTMx)C–20Ni by using experimental methods. The (Ti0.7W0.3)C–20Ni cermet exhibited enhanced hardness and fracture toughness in relation to conventional TiC–Ni cermets. Computational and experimental results indicated that the addition of secondary carbides improved the overall material properties. Graphical abstract","PeriodicalId":18270,"journal":{"name":"Materials Technology","volume":"175 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/10667857.2023.2251293","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT In recent years, significant efforts have been devoted towards the development of high-performance cermets with superior hardness and fracture toughness for engineering applications. In this study, a (Ti1-xTMx)C solid solution of a Ni cermet was prepared based on a combination of ab initio calculation and experimental results. The structural stability, mechanical properties, and microstructure of the cermet were investigated. A screening process was conducted using ab initio calculations to determine the optimal composition of (Ti1-xTMx)C (TM = V, Mo, and W) (x = 0–0.3125). The enhancement of the mechanical properties was analysed by calculating the electronic properties of the (Ti1-xTMx)C solid solutions. Additionally, we evaluated the powder morphology, microstructure, and mechanical properties of (Ti1-xTMx)C–20Ni by using experimental methods. The (Ti0.7W0.3)C–20Ni cermet exhibited enhanced hardness and fracture toughness in relation to conventional TiC–Ni cermets. Computational and experimental results indicated that the addition of secondary carbides improved the overall material properties. Graphical abstract
期刊介绍:
Materials Technology: Advanced Performance Materials provides an international medium for the communication of progress in the field of functional materials (advanced materials in which composition, structure and surface are functionalised to confer specific, applications-oriented properties). The focus is on materials for biomedical, electronic, photonic and energy applications. Contributions should address the physical, chemical, or engineering sciences that underpin the design and application of these materials. The scientific and engineering aspects may include processing and structural characterisation from the micro- to nanoscale to achieve specific functionality.