Artificial intelligence and statistics for quality technology: an introduction to the special issue

IF 2.6 2区 工程技术 Q2 ENGINEERING, INDUSTRIAL Journal of Quality Technology Pub Date : 2021-10-20 DOI:10.1080/00224065.2021.1987806
B. Colosimo, Enrique del Castillo, L. A. Jones‐Farmer, K. Paynabar
{"title":"Artificial intelligence and statistics for quality technology: an introduction to the special issue","authors":"B. Colosimo, Enrique del Castillo, L. A. Jones‐Farmer, K. Paynabar","doi":"10.1080/00224065.2021.1987806","DOIUrl":null,"url":null,"abstract":"Abstract In many applied and industrial settings, the use of Artificial Intelligence (AI) for quality technology is gaining growing attention. AI refers to the broad set of techniques which replicate human cognitive and analytical skills for problem solving, including Machine Learning, Neural Networks and Deep Learning. This paper presents a brief introduction to the special issue, where AI-based solutions are presented to solve problems that are typically faced in the area of quality technology. Limits and advantages of AI-based solutions are briefly discussed to stimulate creative attention to novel solutions and new directions for future research.","PeriodicalId":54769,"journal":{"name":"Journal of Quality Technology","volume":"68 1","pages":"443 - 453"},"PeriodicalIF":2.6000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quality Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/00224065.2021.1987806","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 9

Abstract

Abstract In many applied and industrial settings, the use of Artificial Intelligence (AI) for quality technology is gaining growing attention. AI refers to the broad set of techniques which replicate human cognitive and analytical skills for problem solving, including Machine Learning, Neural Networks and Deep Learning. This paper presents a brief introduction to the special issue, where AI-based solutions are presented to solve problems that are typically faced in the area of quality technology. Limits and advantages of AI-based solutions are briefly discussed to stimulate creative attention to novel solutions and new directions for future research.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人工智能与质量技术统计:特刊导论
在许多应用和工业环境中,使用人工智能(AI)进行质量技术越来越受到关注。人工智能指的是一系列广泛的技术,这些技术可以复制人类解决问题的认知和分析技能,包括机器学习、神经网络和深度学习。本文简要介绍了这一特殊问题,其中提出了基于人工智能的解决方案,以解决质量技术领域通常面临的问题。简要讨论了基于人工智能的解决方案的局限性和优势,以激发对新解决方案和未来研究新方向的创造性关注。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Quality Technology
Journal of Quality Technology 管理科学-工程:工业
CiteScore
5.20
自引率
4.00%
发文量
23
审稿时长
>12 weeks
期刊介绍: The objective of Journal of Quality Technology is to contribute to the technical advancement of the field of quality technology by publishing papers that emphasize the practical applicability of new techniques, instructive examples of the operation of existing techniques and results of historical researches. Expository, review, and tutorial papers are also acceptable if they are written in a style suitable for practicing engineers. Sample our Mathematics & Statistics journals, sign in here to start your FREE access for 14 days
期刊最新文献
SpTe2M: An R package for nonparametric modeling and monitoring of spatiotemporal data Spatial modeling and monitoring considering long-range dependence A change-point–based control chart for detecting sparse mean changes in high-dimensional heteroscedastic data Best practices for multi- and mixed-level supersaturated designs Sequential Latin hypercube design for two-layer computer simulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1