Maximizing AUC with Deep Learning for Classification of Imbalanced Mammogram Datasets

Jeremias Sulam, Rami Ben-Ari, P. Kisilev
{"title":"Maximizing AUC with Deep Learning for Classification of Imbalanced Mammogram Datasets","authors":"Jeremias Sulam, Rami Ben-Ari, P. Kisilev","doi":"10.2312/vcbm.20171246","DOIUrl":null,"url":null,"abstract":"Breast cancer is the second most common cause of death in women. Computer-aided diagnosis typically demand for carefully annotated data, precise tumor allocation and delineation of the boundaries, which is rarely available in the medical system. In this paper we present a new deep learning approach for classification of mammograms that requires only a global binary label. Traditional deep learning methods typically employ classification error losses, which are highly biased by class imbalance – a situation that naturally arises in medical classification problems. We hereby suggest a novel loss measure that directly maximizes the Area Under the ROC Curve (AUC), providing an unbiased loss. We validate the proposed model on two mammogram datasets: IMG, comprising of 796 patients, 80 positive (164 images) and 716 negative (1869 images), and the publicly available dataset INbreast. Our results are encouraging, as the proposed scheme achieves an AUC of 0.76 and 0.65 for IMG and INbreast,","PeriodicalId":88872,"journal":{"name":"Eurographics Workshop on Visual Computing for Biomedicine","volume":"23 1","pages":"131-135"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurographics Workshop on Visual Computing for Biomedicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2312/vcbm.20171246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Breast cancer is the second most common cause of death in women. Computer-aided diagnosis typically demand for carefully annotated data, precise tumor allocation and delineation of the boundaries, which is rarely available in the medical system. In this paper we present a new deep learning approach for classification of mammograms that requires only a global binary label. Traditional deep learning methods typically employ classification error losses, which are highly biased by class imbalance – a situation that naturally arises in medical classification problems. We hereby suggest a novel loss measure that directly maximizes the Area Under the ROC Curve (AUC), providing an unbiased loss. We validate the proposed model on two mammogram datasets: IMG, comprising of 796 patients, 80 positive (164 images) and 716 negative (1869 images), and the publicly available dataset INbreast. Our results are encouraging, as the proposed scheme achieves an AUC of 0.76 and 0.65 for IMG and INbreast,
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用深度学习最大化不平衡乳房x线照片数据集分类的AUC
乳腺癌是导致妇女死亡的第二大常见原因。计算机辅助诊断通常需要仔细注释的数据,精确的肿瘤分配和边界划定,这些在医疗系统中很少可用。在本文中,我们提出了一种新的乳房x线照片分类的深度学习方法,它只需要一个全局二值标签。传统的深度学习方法通常采用分类误差损失,这种方法由于类别不平衡而高度偏倚,这是医学分类问题中自然出现的一种情况。我们在此提出一种新的损失测量方法,可以直接最大化ROC曲线下的面积(AUC),从而提供无偏损失。我们在两个乳房x线照片数据集上验证了所提出的模型:IMG,包括796名患者,80例阳性(164张)和716例阴性(1869张),以及公开可用的数据集INbreast。我们的结果是令人鼓舞的,因为所提出的方案在IMG和INbreast上实现了0.76和0.65的AUC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual Analytics to Assess Deep Learning Models for Cross-Modal Brain Tumor Segmentation Distance Visualizations for Vascular Structures in Desktop and VR: Overview and Implementation Is there a Tornado in Alex's Blood Flow? A Case Study for Narrative Medical Visualization HistoContours: a Framework for Visual Annotation of Histopathology Whole Slide Images Predicting, Analyzing and Communicating Outcomes of COVID-19 Hospitalizations with Medical Images and Clinical Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1