Analysis of the codon usage pattern in 2019-nCoV

S. Sahoo
{"title":"Analysis of the codon usage pattern in 2019-nCoV","authors":"S. Sahoo","doi":"10.1504/ijcbdd.2021.10042392","DOIUrl":null,"url":null,"abstract":"Upon a viral outbreak of novel coronavirus (2019-nCoV), it is very important to understand the molecular characteristics of the SARS-CoV-2 genome to detect the causative agent of the deadly viral infection. In the present study, we comprehensively analysed the codon usage pattern of SARS-CoV-2 to gain an insight into the viral pathogenesis as well as the evolutionary process of the newly emerging coronavirus. The correspondence analysis (CA), the effective number of codons versus GC3(NC-plot), and the relationship between GC12 versus GC3 show that a low codon usage bias exists in SARS-CoV-2. Both mutation and natural selection pressure have contributed to this low codon usage bias, with the former being the main determining factor. Lastly, the relationship of codon usage index (CUI), codon adaptation index (CAI), and the gene expression profile of SARS-CoV-2 genes have been discussed in reference to codon bias score (CBS) for further study on the virus-host relationship and their evolutionary phenomenon.","PeriodicalId":13612,"journal":{"name":"Int. J. Comput. Biol. Drug Des.","volume":"84 1","pages":"273-296"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Biol. Drug Des.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcbdd.2021.10042392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Upon a viral outbreak of novel coronavirus (2019-nCoV), it is very important to understand the molecular characteristics of the SARS-CoV-2 genome to detect the causative agent of the deadly viral infection. In the present study, we comprehensively analysed the codon usage pattern of SARS-CoV-2 to gain an insight into the viral pathogenesis as well as the evolutionary process of the newly emerging coronavirus. The correspondence analysis (CA), the effective number of codons versus GC3(NC-plot), and the relationship between GC12 versus GC3 show that a low codon usage bias exists in SARS-CoV-2. Both mutation and natural selection pressure have contributed to this low codon usage bias, with the former being the main determining factor. Lastly, the relationship of codon usage index (CUI), codon adaptation index (CAI), and the gene expression profile of SARS-CoV-2 genes have been discussed in reference to codon bias score (CBS) for further study on the virus-host relationship and their evolutionary phenomenon.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
2019-nCoV病毒密码子使用模式分析
在新型冠状病毒(2019-nCoV)爆发时,了解SARS-CoV-2基因组的分子特征对于检测致命病毒感染的病原体非常重要。在本研究中,我们全面分析了SARS-CoV-2的密码子使用模式,以深入了解病毒的发病机制和新出现的冠状病毒的进化过程。对应分析(CA)、与GC3的有效密码子数(NC-plot)以及GC12与GC3的关系表明,SARS-CoV-2存在较低的密码子使用偏置。突变和自然选择压力都导致了这种低密码子使用偏差,前者是主要的决定因素。最后,参考密码子偏差评分(CBS),讨论了密码子使用指数(CUI)、密码子适应指数(CAI)与SARS-CoV-2基因基因表达谱的关系,为进一步研究病毒-宿主关系及其进化现象提供依据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Random forest with SMOTE and ensemble feature selection for cervical cancer diagnosis A review on speech organ diseases and cancer detection using artificial intelligence In silico phytochemical repurposing of natural molecules as entry inhibitors against RBD of the spike protein of SARS-CoV-2 using molecular docking studies Generation of 2D-QSAR and pharmacophore models for fishing better anti-leishmanial therapeutics Computational identification of personal genetic variants in an identical twin sisters' family
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1