{"title":"Detection and Identification Method of Dangerous Goods under X-ray Based on Improved YOLOv3","authors":"Hong Zhang, Boyuan Xue, Qiang Zhi, Yiwen Fu, Lingfei Han, Qing Zhang, Chao Zhang","doi":"10.1109/SSCI44817.2019.9003131","DOIUrl":null,"url":null,"abstract":"X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"51 1","pages":"2747-2752"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.
x射线安全检查设备广泛应用于各种公共场所,用于检测危险物品。目前,x射线安全检查大多依靠人工检查,检测效率差强人意。在图像检测技术领域,基于深度学习的方法具有成本低、配置简单等优点。在本文中,我们提出了更多的尺度你只看一次版本3 (MS-YOLOv3)来检测和识别x射线下的危险品。MS-YOLOv3通过残差网络和多尺度融合对原来的You Only Look Once version 3 (YOLOv3)网络结构进行优化,改进损失函数,并使用x射线下的危险品数据集进行训练和测试。实验结果表明,优化方法的mAP比YOLOv3提高了7.08%。