Detection and Identification Method of Dangerous Goods under X-ray Based on Improved YOLOv3

Hong Zhang, Boyuan Xue, Qiang Zhi, Yiwen Fu, Lingfei Han, Qing Zhang, Chao Zhang
{"title":"Detection and Identification Method of Dangerous Goods under X-ray Based on Improved YOLOv3","authors":"Hong Zhang, Boyuan Xue, Qiang Zhi, Yiwen Fu, Lingfei Han, Qing Zhang, Chao Zhang","doi":"10.1109/SSCI44817.2019.9003131","DOIUrl":null,"url":null,"abstract":"X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.","PeriodicalId":6729,"journal":{"name":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","volume":"51 1","pages":"2747-2752"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Symposium Series on Computational Intelligence (SSCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSCI44817.2019.9003131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

X-ray safety inspection equipment is widely used in various public places for the detection of dangerous goods. At present, X-ray safety inspections mostly rely on manual inspections, so the detection efficiency is unsatisfactory. In the field of image detection technology, the deep learning based method has the advantages of low cost and simple configuration. In this paper ,we propose More Scales You Only Look Once version 3 (MS-YOLOv3) to detect and identify dangerous goods under X-ray.MS-YOLOv3 optimize the original You Only Look Once version 3 (YOLOv3) network structure by means of residual network and multi-scale fusion, improve the loss function and use the dangerous goods dataset under X-ray for training and testing. The experimental results show that the mAP of the optimized method is 7.08% higher than YOLOv3.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改进YOLOv3的x射线下危险品检测识别方法
x射线安全检查设备广泛应用于各种公共场所,用于检测危险物品。目前,x射线安全检查大多依靠人工检查,检测效率差强人意。在图像检测技术领域,基于深度学习的方法具有成本低、配置简单等优点。在本文中,我们提出了更多的尺度你只看一次版本3 (MS-YOLOv3)来检测和识别x射线下的危险品。MS-YOLOv3通过残差网络和多尺度融合对原来的You Only Look Once version 3 (YOLOv3)网络结构进行优化,改进损失函数,并使用x射线下的危险品数据集进行训练和测试。实验结果表明,优化方法的mAP比YOLOv3提高了7.08%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Planning for millions of NPCs in Real-Time Improving Diversity in Concept Drift Ensembles Self-Organizing Transformations for Automatic Feature Engineering Corrosion-like Defect Severity Estimation in Pipelines Using Convolutional Neural Networks Heuristic Hybridization for CaRSP, a multilevel decision problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1