A deformable model for the reconstruction of the neonatal cortex

A. Schuh, A. Makropoulos, R. Wright, E. Robinson, N. Tusor, J. Steinweg, E. Hughes, Lucilio Cordero-Grande, A. Price, J. Hutter, J. Hajnal, D. Rueckert
{"title":"A deformable model for the reconstruction of the neonatal cortex","authors":"A. Schuh, A. Makropoulos, R. Wright, E. Robinson, N. Tusor, J. Steinweg, E. Hughes, Lucilio Cordero-Grande, A. Price, J. Hutter, J. Hajnal, D. Rueckert","doi":"10.1109/ISBI.2017.7950639","DOIUrl":null,"url":null,"abstract":"We present a method based on deformable meshes for the reconstruction of the cortical surfaces of the developing human brain at the neonatal period. It employs a brain segmentation for the reconstruction of an initial inner cortical surface mesh. Errors in the segmentation resulting from poor tissue contrast in neonatal MRI and partial volume effects are subsequently accounted for by a local edge-based refinement. We show that the obtained surface models define the cortical boundaries more accurately than the segmentation. The surface meshes are further guaranteed to not intersect and subdivide the brain volume into disjoint regions. The proposed method generates topologically correct surfaces which facilitate both a flattening and spherical mapping of the cortex.","PeriodicalId":6547,"journal":{"name":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","volume":"37 1","pages":"800-803"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"42","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBI.2017.7950639","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 42

Abstract

We present a method based on deformable meshes for the reconstruction of the cortical surfaces of the developing human brain at the neonatal period. It employs a brain segmentation for the reconstruction of an initial inner cortical surface mesh. Errors in the segmentation resulting from poor tissue contrast in neonatal MRI and partial volume effects are subsequently accounted for by a local edge-based refinement. We show that the obtained surface models define the cortical boundaries more accurately than the segmentation. The surface meshes are further guaranteed to not intersect and subdivide the brain volume into disjoint regions. The proposed method generates topologically correct surfaces which facilitate both a flattening and spherical mapping of the cortex.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新生儿皮质重建的可变形模型
我们提出了一种基于可变形网格的方法,用于重建新生儿期发育中的人脑皮层表面。它采用脑分割法重建初始的内皮层表面网格。由于新生儿MRI组织对比差和部分体积效应导致的分割错误随后由局部边缘改进来解释。结果表明,获得的表面模型比分割更准确地定义了皮质边界。表面网格进一步保证不相交,并将脑体积细分为不相交的区域。所提出的方法生成拓扑正确的表面,从而促进皮层的平坦化和球形映射。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Classification of adrenal lesions through spatial Bayesian modeling of GLCM Correction of partial volume effect in 99mTc-TRODAT-1 brain SPECT images using an edge-preserving weighted regularization Two-dimensional speckle tracking using parabolic polynomial expansion with Riesz transform Elastic registration of high-resolution 3D PLI data of the human brain Registration of ultra-high resolution 3D PLI data of human brain sections to their corresponding high-resolution counterpart
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1