Investigating the Impact of Inclusion in Face Recognition Training Data on Individual Face Identification

Chris Dulhanty, A. Wong
{"title":"Investigating the Impact of Inclusion in Face Recognition Training Data on Individual Face Identification","authors":"Chris Dulhanty, A. Wong","doi":"10.1145/3375627.3375875","DOIUrl":null,"url":null,"abstract":"Modern face recognition systems leverage datasets containing images of hundreds of thousands of specific individuals' faces to train deep convolutional neural networks to learn an embedding space that maps an arbitrary individual's face to a vector representation of their identity. The performance of a face recognition system in face verification (1:1) and face identification (1:N) tasks is directly related to the ability of an embedding space to discriminate between identities. Recently, there has been significant public scrutiny into the source and privacy implications of large-scale face recognition training datasets such as MS-Celeb-1M and MegaFace, as many people are uncomfortable with their face being used to train dual-use technologies that can enable mass surveillance. However, the impact of an individual's inclusion in training data on a derived system's ability to recognize them has not previously been studied. In this work, we audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images. We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present. This modest difference in accuracy demonstrates that face recognition systems using deep learning work better for individuals they are trained on, which has serious privacy implications when one considers all major open source face recognition training datasets do not obtain informed consent from individuals during their collection.","PeriodicalId":93612,"journal":{"name":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3375627.3375875","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Modern face recognition systems leverage datasets containing images of hundreds of thousands of specific individuals' faces to train deep convolutional neural networks to learn an embedding space that maps an arbitrary individual's face to a vector representation of their identity. The performance of a face recognition system in face verification (1:1) and face identification (1:N) tasks is directly related to the ability of an embedding space to discriminate between identities. Recently, there has been significant public scrutiny into the source and privacy implications of large-scale face recognition training datasets such as MS-Celeb-1M and MegaFace, as many people are uncomfortable with their face being used to train dual-use technologies that can enable mass surveillance. However, the impact of an individual's inclusion in training data on a derived system's ability to recognize them has not previously been studied. In this work, we audit ArcFace, a state-of-the-art, open source face recognition system, in a large-scale face identification experiment with more than one million distractor images. We find a Rank-1 face identification accuracy of 79.71% for individuals present in the model's training data and an accuracy of 75.73% for those not present. This modest difference in accuracy demonstrates that face recognition systems using deep learning work better for individuals they are trained on, which has serious privacy implications when one considers all major open source face recognition training datasets do not obtain informed consent from individuals during their collection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
研究人脸识别训练数据中包含对个体人脸识别的影响
现代人脸识别系统利用包含数十万特定个体面部图像的数据集来训练深度卷积神经网络,以学习嵌入空间,将任意个体的面部映射到其身份的向量表示。人脸识别系统在人脸验证(1:1)和人脸识别(1:1:N)任务中的性能直接关系到嵌入空间区分身份的能力。最近,公众对MS-Celeb-1M和MegaFace等大规模人脸识别训练数据集的来源和隐私影响进行了重大审查,因为许多人对他们的脸被用于训练可以实现大规模监控的军民两用技术感到不舒服。然而,在训练数据中包含个人对派生系统识别他们的能力的影响以前没有研究过。在这项工作中,我们审计ArcFace,一个最先进的,开源的人脸识别系统,在一个大规模的人脸识别实验超过一百万分心图像。我们发现,对于模型训练数据中存在的个体,Rank-1人脸识别准确率为79.71%,对于不存在的个体,准确率为75.73%。这种准确性上的适度差异表明,使用深度学习的人脸识别系统对他们所训练的个人工作得更好,当人们考虑到所有主要的开源人脸识别训练数据集在收集过程中都没有获得个人的知情同意时,这就会产生严重的隐私影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bias in Artificial Intelligence Models in Financial Services Privacy Preserving Machine Learning Systems AIES '22: AAAI/ACM Conference on AI, Ethics, and Society, Oxford, United Kingdom, May 19 - 21, 2021 To Scale: The Universalist and Imperialist Narrative of Big Tech AIES '21: AAAI/ACM Conference on AI, Ethics, and Society, Virtual Event, USA, May 19-21, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1