Calibration and multiple system fusion for spoken term detection using linear logistic regression

Julien van Hout, L. Ferrer, D. Vergyri, N. Scheffer, Yun Lei, V. Mitra, S. Wegmann
{"title":"Calibration and multiple system fusion for spoken term detection using linear logistic regression","authors":"Julien van Hout, L. Ferrer, D. Vergyri, N. Scheffer, Yun Lei, V. Mitra, S. Wegmann","doi":"10.1109/ICASSP.2014.6854985","DOIUrl":null,"url":null,"abstract":"State-of-the-art calibration and fusion approaches for spoken term detection (STD) systems currently rely on a multi-pass approach where the scores are calibrated, then fused, and finally re-calibrated to obtain a single decision threshold across keywords. While the above techniques are theoretically correct, they rely on meta-parameter tuning and are prone to over-fitting. This study presents an efficient and effective score calibration technique for keyword detection that is based on the logistic regression calibration approach commonly used in forensic speaker identification. The technique applies seamlessly to both single systems and to system fusion, and enables optimization for specific keyword detection evaluation functions. We run experiments on a Vietnamese STD task, comparing the technique with more empirical calibration and fusion schemes and demonstrate that we can achieve comparable or better performance in terms of the NIST ATWV metric with a more elegant solution.","PeriodicalId":6545,"journal":{"name":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"72 1","pages":"7138-7142"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2014.6854985","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

State-of-the-art calibration and fusion approaches for spoken term detection (STD) systems currently rely on a multi-pass approach where the scores are calibrated, then fused, and finally re-calibrated to obtain a single decision threshold across keywords. While the above techniques are theoretically correct, they rely on meta-parameter tuning and are prone to over-fitting. This study presents an efficient and effective score calibration technique for keyword detection that is based on the logistic regression calibration approach commonly used in forensic speaker identification. The technique applies seamlessly to both single systems and to system fusion, and enables optimization for specific keyword detection evaluation functions. We run experiments on a Vietnamese STD task, comparing the technique with more empirical calibration and fusion schemes and demonstrate that we can achieve comparable or better performance in terms of the NIST ATWV metric with a more elegant solution.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于线性逻辑回归的口语词检测校准和多系统融合
口语词检测(STD)系统的最先进的校准和融合方法目前依赖于多通道方法,其中分数被校准,然后融合,最后重新校准,以获得跨关键字的单一决策阈值。虽然上述技术在理论上是正确的,但它们依赖于元参数调整,并且容易过度拟合。基于法医说话人识别中常用的逻辑回归校准方法,提出了一种高效的关键字检测分数校准技术。该技术可无缝应用于单个系统和系统融合,并可优化特定关键字检测评估功能。我们在越南STD任务上进行了实验,将该技术与更多经验校准和融合方案进行了比较,并证明我们可以通过更优雅的解决方案获得与NIST ATWV度量相当或更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multichannel detection of an unknown rank-one signal with uncalibrated receivers Design and implementation of a low power spike detection processor for 128-channel spike sorting microsystem On the convergence of average consensus with generalized metropolis-hasting weights A network of HF surface wave radars for maritime surveillance: Preliminary results in the German Bight Mobile real-time arousal detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1