Production of nanopowders from physical vapor deposited films on nonmetallic substrates by conjunctional freezing-assisted ultrasonic extraction method

O. Hammadi
{"title":"Production of nanopowders from physical vapor deposited films on nonmetallic substrates by conjunctional freezing-assisted ultrasonic extraction method","authors":"O. Hammadi","doi":"10.1177/2397791418807347","DOIUrl":null,"url":null,"abstract":"A new technique to extract nanoscale powders from thin films deposited by a physical vapor deposition method on nonmetallic substrates is proposed. Powders were extracted from films of different materials, such as silicon, nickel, copper, iron, aluminum and cobalt, and compounds, such as aluminum nitride, aluminum oxide, copper oxide, iron oxide, nickel cobaltite, nickel ferrite, nickel oxide, silicon carbide, silicon nitride and silicon oxide. These thin films were deposited on glass substrates by magnetron sputtering, pulsed-laser deposition, spray pyrolysis or thermal evaporation, and the particle sizes of the extracted powders were comparable to those of film samples. This technique is fast, low cost, reliable, highly clean and appropriate for large-scale samples.","PeriodicalId":44789,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","volume":"10 1","pages":"135 - 140"},"PeriodicalIF":4.2000,"publicationDate":"2018-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/2397791418807347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 7

Abstract

A new technique to extract nanoscale powders from thin films deposited by a physical vapor deposition method on nonmetallic substrates is proposed. Powders were extracted from films of different materials, such as silicon, nickel, copper, iron, aluminum and cobalt, and compounds, such as aluminum nitride, aluminum oxide, copper oxide, iron oxide, nickel cobaltite, nickel ferrite, nickel oxide, silicon carbide, silicon nitride and silicon oxide. These thin films were deposited on glass substrates by magnetron sputtering, pulsed-laser deposition, spray pyrolysis or thermal evaporation, and the particle sizes of the extracted powders were comparable to those of film samples. This technique is fast, low cost, reliable, highly clean and appropriate for large-scale samples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
联合冷冻辅助超声萃取法制备非金属基板物理气相沉积膜纳米粉体
提出了一种从非金属基底上物理气相沉积的薄膜中提取纳米级粉末的新技术。从不同材料(如硅、镍、铜、铁、铝、钴)和化合物(如氮化铝、氧化铝、氧化铜、氧化铁、钴酸镍、铁酸镍、氧化镍、碳化硅、氮化硅和氧化硅)的薄膜中提取粉末。这些薄膜通过磁控溅射、脉冲激光沉积、喷雾热解或热蒸发等方法沉积在玻璃基底上,提取的粉末粒度与薄膜样品相当。该技术快速、低成本、可靠、高度清洁,适用于大规模样品。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
6.00
自引率
1.70%
发文量
24
期刊介绍: Proceedings of the Institution of Mechanical Engineers Part N-Journal of Nanomaterials Nanoengineering and Nanosystems is a peer-reviewed scientific journal published since 2004 by SAGE Publications on behalf of the Institution of Mechanical Engineers. The journal focuses on research in the field of nanoengineering, nanoscience and nanotechnology and aims to publish high quality academic papers in this field. In addition, the journal is indexed in several reputable academic databases and abstracting services, including Scopus, Compendex, and CSA's Advanced Polymers Abstracts, Composites Industry Abstracts, and Earthquake Engineering Abstracts.
期刊最新文献
Performance of carbon nanotubes (CNTs) on the development of radiating hybrid nanofluid flow through an stretching cylinder Optimizing compressive mechanical properties and water absorption of polycaprolactone/nano-hydroxyapatite composite scaffolds by 3D printing based on fused deposition modeling Effectiveness of silver-magnesium oxide-water hybrid nanofluid in Couette channel Optimization and fuzzy model for evaluation of mechanical and tribological properties of Al-CNT-Si3N4 based nano and hybrid composites Adsorption investigation of a composite of metal-organic framework and polyethylene oxide hydrogel
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1