A. S. Aydin, Abhinandan Dubey, Daniel Dovrat, A. Aharoni, Roy Shilkrot
{"title":"CNN Based Yeast Cell Segmentation in Multi-modal Fluorescent Microscopy Data","authors":"A. S. Aydin, Abhinandan Dubey, Daniel Dovrat, A. Aharoni, Roy Shilkrot","doi":"10.1109/CVPRW.2017.105","DOIUrl":null,"url":null,"abstract":"We present a method for foreground segmentation of yeast cells in the presence of high-noise induced by intentional low illumination, where traditional approaches (e.g., threshold-based methods, specialized cell-segmentation methods) fail. To deal with these harsh conditions, we use a fully-convolutional semantic segmentation network based on the SegNet architecture. Our model is capable of segmenting patches extracted from yeast live-cell experiments with a mIOU score of 0.71 on unseen patches drawn from independent experiments. Further, we show that simultaneous multi-modal observations of bio-fluorescent markers can result in better segmentation performance than the DIC channel alone.","PeriodicalId":6668,"journal":{"name":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","volume":"23 1","pages":"753-759"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2017.105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26
Abstract
We present a method for foreground segmentation of yeast cells in the presence of high-noise induced by intentional low illumination, where traditional approaches (e.g., threshold-based methods, specialized cell-segmentation methods) fail. To deal with these harsh conditions, we use a fully-convolutional semantic segmentation network based on the SegNet architecture. Our model is capable of segmenting patches extracted from yeast live-cell experiments with a mIOU score of 0.71 on unseen patches drawn from independent experiments. Further, we show that simultaneous multi-modal observations of bio-fluorescent markers can result in better segmentation performance than the DIC channel alone.