An optimization-based approach to parameter learning for fractional type nonlocal models

O. Burkovska, Christian A. Glusa, M. D'Elia
{"title":"An optimization-based approach to parameter learning for fractional type nonlocal models","authors":"O. Burkovska, Christian A. Glusa, M. D'Elia","doi":"10.2172/1673822","DOIUrl":null,"url":null,"abstract":"Nonlocal operators of fractional type are a popular modeling choice for applications that do not adhere to classical diffusive behavior; however, one major challenge in nonlocal simulations is the selection of model parameters. In this work we propose an optimization-based approach to parameter identification for fractional models with an optional truncation radius. We formulate the inference problem as an optimal control problem where the objective is to minimize the discrepancy between observed data and an approximate solution of the model, and the control variables are the fractional order and the truncation length. For the numerical solution of the minimization problem we propose a gradient-based approach, where we enhance the numerical performance by an approximation of the bilinear form of the state equation and its derivative with respect to the fractional order. Several numerical tests in one and two dimensions illustrate the theoretical results and show the robustness and applicability of our method.","PeriodicalId":10572,"journal":{"name":"Comput. Math. Appl.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comput. Math. Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2172/1673822","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

Nonlocal operators of fractional type are a popular modeling choice for applications that do not adhere to classical diffusive behavior; however, one major challenge in nonlocal simulations is the selection of model parameters. In this work we propose an optimization-based approach to parameter identification for fractional models with an optional truncation radius. We formulate the inference problem as an optimal control problem where the objective is to minimize the discrepancy between observed data and an approximate solution of the model, and the control variables are the fractional order and the truncation length. For the numerical solution of the minimization problem we propose a gradient-based approach, where we enhance the numerical performance by an approximation of the bilinear form of the state equation and its derivative with respect to the fractional order. Several numerical tests in one and two dimensions illustrate the theoretical results and show the robustness and applicability of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分数型非局部模型参数学习的优化方法
分数型非局部算子是不遵循经典扩散行为的应用程序的流行建模选择;然而,非局部仿真的一个主要挑战是模型参数的选择。在这项工作中,我们提出了一种基于优化的方法,用于具有可选截断半径的分数模型的参数识别。我们将推理问题表述为一个最优控制问题,其目标是最小化观测数据与模型近似解之间的差异,控制变量是分数阶和截断长度。对于最小化问题的数值解,我们提出了一种基于梯度的方法,其中我们通过近似状态方程的双线性形式及其导数相对于分数阶来增强数值性能。若干一维和二维的数值试验验证了理论结果,证明了本文方法的鲁棒性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Meshfree methods for nonlinear equilibrium radiation diffusion equation with jump coefficient Effects of prefilmer edge configuration on primary liquid film breakup: A lattice Boltzmann study A family of edge-centered finite volume schemes for heterogeneous and anisotropic diffusion problems on unstructured meshes A Banach spaces-based fully-mixed finite element method for the stationary chemotaxis-Navier-Stokes problem Second-order linear adaptive time-stepping schemes for the fractional Allen-Cahn equation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1