A novel method of text representation on hybrid neural networks

Yanbu Guo, Chen Jin, Weihua Li, Chen Ji, Yuanye Fang, Yunhao Duan
{"title":"A novel method of text representation on hybrid neural networks","authors":"Yanbu Guo, Chen Jin, Weihua Li, Chen Ji, Yuanye Fang, Yunhao Duan","doi":"10.1109/CISP-BMEI.2017.8302099","DOIUrl":null,"url":null,"abstract":"Text representation is one of the fundamental problems in text analysis tasks. The key of text representation is to extract and express the semantic and syntax feature of texts. The order-sensitive sequence models based on neural networks have achieved great progress in text representation. Bidirectional Long Short-Term Memory (BiLSTM) Neural Networks, as an extension of Recurrent Neural Networks (RNN), not only can deal with variable-length texts, capture the long-term dependencies in texts, but also model the forward and backward sequence contexts. Moreover, typical neural networks, Convolutional Neural Networks (CNN), can extract more semantic and structural information from texts, because of their convolution and pooling operations. The paper proposes a hybrid model, which combines the BiLSTM with 2-dimensial convolution and 1-dimensial pooling operations. In other words, the model firstly captures the abstract representation vector of texts by the BiLSTM, and then extracts text semantic features by 2-dimensial convolutional and 1-dimensial pooling operations. Experiments on text classification tasks show that our method obtains preferable performances compared with the state-of-the-art models when applied on the MR1 sentence polarity dataset.","PeriodicalId":6474,"journal":{"name":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","volume":"43 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 10th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISP-BMEI.2017.8302099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Text representation is one of the fundamental problems in text analysis tasks. The key of text representation is to extract and express the semantic and syntax feature of texts. The order-sensitive sequence models based on neural networks have achieved great progress in text representation. Bidirectional Long Short-Term Memory (BiLSTM) Neural Networks, as an extension of Recurrent Neural Networks (RNN), not only can deal with variable-length texts, capture the long-term dependencies in texts, but also model the forward and backward sequence contexts. Moreover, typical neural networks, Convolutional Neural Networks (CNN), can extract more semantic and structural information from texts, because of their convolution and pooling operations. The paper proposes a hybrid model, which combines the BiLSTM with 2-dimensial convolution and 1-dimensial pooling operations. In other words, the model firstly captures the abstract representation vector of texts by the BiLSTM, and then extracts text semantic features by 2-dimensial convolutional and 1-dimensial pooling operations. Experiments on text classification tasks show that our method obtains preferable performances compared with the state-of-the-art models when applied on the MR1 sentence polarity dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种基于混合神经网络的文本表示方法
文本表示是文本分析任务中的基本问题之一。文本表示的关键是提取和表达文本的语义和语法特征。基于神经网络的顺序敏感序列模型在文本表示方面取得了很大进展。双向长短期记忆(BiLSTM)神经网络作为递归神经网络(RNN)的扩展,不仅可以处理变长度文本,捕获文本中的长期依赖关系,还可以对前后序列上下文进行建模。此外,典型的神经网络卷积神经网络(CNN)由于其卷积和池化操作,可以从文本中提取更多的语义和结构信息。本文提出了一种将BiLSTM与二维卷积和一维池化操作相结合的混合模型。也就是说,该模型首先通过BiLSTM捕获文本的抽象表示向量,然后通过二维卷积和一维池化操作提取文本的语义特征。文本分类任务实验表明,该方法在MR1句子极性数据集上取得了比现有模型更好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Polarization Characterization and Evaluation of Healing Process of the Damaged-skin Applied with Chitosan and Silicone Hydrogel Applicator Design and Implementation of OpenDayLight Manager Application Extraction of cutting plans in craniosynostosis using convolutional neural networks Evaluation of Flight Test Data Quality Based on Rough Set Theory Radar Emitter Type Identification Effect Based On Different Structural Deep Feedforward Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1