Optimal replay-based channel simulation via dithering methods

Sijung Yang, A. Singer
{"title":"Optimal replay-based channel simulation via dithering methods","authors":"Sijung Yang, A. Singer","doi":"10.1109/IEEECONF44664.2019.9049034","DOIUrl":null,"url":null,"abstract":"We investigate replay-based channel simulation methods that reuse data collected from expensive field experiments through the use of dither within the standard communication pipeline. While traditional playback simulations rely on accurate channel models and their estimates, the method proposed here reduces the effect of channel estimation errors and unmodeled effects by exploiting similarities between different input signals. A notion of optimality of the proposed scheme will be discussed from the perspective of a related estimation problem. Finally, the proposed scheme is tested both numerically and experimentally with field data collected from MACE 10 experiments.","PeriodicalId":6684,"journal":{"name":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","volume":"3 1","pages":"957-963"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 53rd Asilomar Conference on Signals, Systems, and Computers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEEECONF44664.2019.9049034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate replay-based channel simulation methods that reuse data collected from expensive field experiments through the use of dither within the standard communication pipeline. While traditional playback simulations rely on accurate channel models and their estimates, the method proposed here reduces the effect of channel estimation errors and unmodeled effects by exploiting similarities between different input signals. A notion of optimality of the proposed scheme will be discussed from the perspective of a related estimation problem. Finally, the proposed scheme is tested both numerically and experimentally with field data collected from MACE 10 experiments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于抖动方法的最优重播信道仿真
我们研究了基于重放的信道模拟方法,该方法通过在标准通信管道中使用抖动来重用从昂贵的现场实验中收集的数据。传统的回放仿真依赖于精确的信道模型及其估计,而本文提出的方法通过利用不同输入信号之间的相似性来减少信道估计误差和未建模效应的影响。本文将从相关估计问题的角度讨论所提出方案的最优性概念。最后,利用MACE 10的实测数据对该方案进行了数值和实验验证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unsupervised learning by a "softened" correlation game: duality and convergence Radar Beampattern Design for a Drone Swarm A Statistical Approach to Dynamic Synchrony Analysis of Neuronal Ensemble Spiking [Copyright notice] Phase Transition Analysis for Covariance Based Massive Random Access with Massive MIMO
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1