DeepCuts: a deep learning optimization framework for versatile GPU workloads

Wookeun Jung, Thanh Tuan Dao, Jaejin Lee
{"title":"DeepCuts: a deep learning optimization framework for versatile GPU workloads","authors":"Wookeun Jung, Thanh Tuan Dao, Jaejin Lee","doi":"10.1145/3453483.3454038","DOIUrl":null,"url":null,"abstract":"Widely used Deep Learning (DL) frameworks, such as TensorFlow, PyTorch, and MXNet, heavily rely on the NVIDIA cuDNN for performance. However, using cuDNN does not always give the best performance. One reason is that it is hard to handle every case of versatile DNN models and GPU architectures with a library that has a fixed implementation. Another reason is that cuDNN lacks kernel fusion functionality that gives a lot of chances to improve performance. In this paper, we propose a DL optimization framework for versatile GPU workloads, called DeepCuts. It considers both kernel implementation parameters and GPU architectures. It analyzes the DL workload, groups multiple DL operations into a single GPU kernel, and generates optimized GPU kernels considering kernel implementation parameters and GPU architecture parameters. The evaluation result with various DL workloads for inference and training indicates that DeepCuts outperforms cuDNN/cuBLAS-based implementations and the state-of-the-art DL optimization frameworks, such as TVM, TensorFlow XLA, and TensorRT.","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454038","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Widely used Deep Learning (DL) frameworks, such as TensorFlow, PyTorch, and MXNet, heavily rely on the NVIDIA cuDNN for performance. However, using cuDNN does not always give the best performance. One reason is that it is hard to handle every case of versatile DNN models and GPU architectures with a library that has a fixed implementation. Another reason is that cuDNN lacks kernel fusion functionality that gives a lot of chances to improve performance. In this paper, we propose a DL optimization framework for versatile GPU workloads, called DeepCuts. It considers both kernel implementation parameters and GPU architectures. It analyzes the DL workload, groups multiple DL operations into a single GPU kernel, and generates optimized GPU kernels considering kernel implementation parameters and GPU architecture parameters. The evaluation result with various DL workloads for inference and training indicates that DeepCuts outperforms cuDNN/cuBLAS-based implementations and the state-of-the-art DL optimization frameworks, such as TVM, TensorFlow XLA, and TensorRT.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DeepCuts:一个用于多种GPU工作负载的深度学习优化框架
广泛使用的深度学习(DL)框架,如TensorFlow, PyTorch和MXNet,在性能上严重依赖NVIDIA cuDNN。然而,使用cuDNN并不总是给出最好的性能。一个原因是很难用一个具有固定实现的库来处理通用DNN模型和GPU架构的每一种情况。另一个原因是cuDNN缺乏内核融合功能,这给了很多提高性能的机会。在本文中,我们提出了一个用于通用GPU工作负载的深度学习优化框架,称为DeepCuts。它考虑了内核实现参数和GPU架构。分析DL工作负载,将多个DL操作分组到单个GPU内核中,综合考虑内核实现参数和GPU架构参数,生成优化的GPU内核。对各种深度学习工作负载进行推理和训练的评估结果表明,DeepCuts优于基于cuDNN/ cublas的实现和最先进的深度学习优化框架,如TVM, TensorFlow XLA和TensorRT。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning to find naming issues with big code and small supervision Cyclic program synthesis Fluid: a framework for approximate concurrency via controlled dependency relaxation Bliss: auto-tuning complex applications using a pool of diverse lightweight learning models Phased synthesis of divide and conquer programs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1