Cross Intelligence Evaluation for Effective Emotional Intelligence Estimation

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Cmc-computers Materials & Continua Pub Date : 2022-01-01 DOI:10.32604/cmc.2022.020264
Ibrahim Alsukayti, Aman Singh
{"title":"Cross Intelligence Evaluation for Effective Emotional Intelligence Estimation","authors":"Ibrahim Alsukayti, Aman Singh","doi":"10.32604/cmc.2022.020264","DOIUrl":null,"url":null,"abstract":": A famous psychologist or researcher, Daniel Goleman, gave a theory on the importance of Emotional Intelligence for the success of an individual’s life. Daniel Goleman quoted in the research that “The contribution of an individual’s Intelligence Quotient (IQ) is only 20% for their success, the remaining 80% is due to Emotional Intelligence (EQ)”. However, in the absence of a reliable technique for EQ evaluation, this factor of overall intelligence is ignored in most of the intelligence evaluation mechanisms. This research presented an analysis based on basic statistical tools along with more sophisticated deep learning tools. The proposed cross intelligence evaluation uses two different aspects which are similar, i.e., EQ and SQ to estimate EQ by using a trained model over SQ Dataset. This presented analysis ensures the resemblance between the Emotional and Social Intelligence of an Individual. The research authenticates the results over standard statistical tools and is practically inspected by deep learning tools. Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF) and Social IQ dataset are deployed over a Multi-layered Long-Short Term Memory (M-LSTM) based deep learning model for accessing the resemblance between EQ and SQ. The M-LSTM based trained deep learning model registered, the high positive resemblance between Emotional and Social Intelligence and concluded that the resemblance factor between these two is more than 99.84%. This much resemblance allows future researchers to calculate human emotional intelligence with the help of social intelligence. This flexibility also allows the use of Big Data available on social networks, to calculate the emotional intelligence of an individual.","PeriodicalId":10440,"journal":{"name":"Cmc-computers Materials & Continua","volume":"40 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cmc-computers Materials & Continua","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.32604/cmc.2022.020264","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

: A famous psychologist or researcher, Daniel Goleman, gave a theory on the importance of Emotional Intelligence for the success of an individual’s life. Daniel Goleman quoted in the research that “The contribution of an individual’s Intelligence Quotient (IQ) is only 20% for their success, the remaining 80% is due to Emotional Intelligence (EQ)”. However, in the absence of a reliable technique for EQ evaluation, this factor of overall intelligence is ignored in most of the intelligence evaluation mechanisms. This research presented an analysis based on basic statistical tools along with more sophisticated deep learning tools. The proposed cross intelligence evaluation uses two different aspects which are similar, i.e., EQ and SQ to estimate EQ by using a trained model over SQ Dataset. This presented analysis ensures the resemblance between the Emotional and Social Intelligence of an Individual. The research authenticates the results over standard statistical tools and is practically inspected by deep learning tools. Trait Emotional Intelligence Questionnaire-Short Form (TEIQue-SF) and Social IQ dataset are deployed over a Multi-layered Long-Short Term Memory (M-LSTM) based deep learning model for accessing the resemblance between EQ and SQ. The M-LSTM based trained deep learning model registered, the high positive resemblance between Emotional and Social Intelligence and concluded that the resemblance factor between these two is more than 99.84%. This much resemblance allows future researchers to calculate human emotional intelligence with the help of social intelligence. This flexibility also allows the use of Big Data available on social networks, to calculate the emotional intelligence of an individual.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
有效情绪智力评估的交叉智力评估
当前位置著名的心理学家或研究人员丹尼尔·戈尔曼提出了一个理论,阐述了情商对个人生活成功的重要性。丹尼尔·戈尔曼在研究中引用了“一个人的智商(IQ)对他们成功的贡献只有20%,其余的80%是由于情商(EQ)”。然而,由于缺乏一种可靠的情商评估技术,大多数智力评估机制都忽略了整体智力的这一因素。这项研究提出了一个基于基本统计工具和更复杂的深度学习工具的分析。本文提出的交叉智力评估方法使用两个相似的不同方面,即EQ和SQ,通过在SQ数据集上使用训练好的模型来估计EQ。这种分析确保了个人的情绪智力和社会智力之间的相似性。该研究通过标准统计工具验证了结果,并通过深度学习工具进行了实际检验。采用基于多层长短期记忆(M-LSTM)的深度学习模型,利用特征情商问卷-短表(TEIQue-SF)和社会智商数据集来获取情商和情商之间的相似性。基于M-LSTM训练的深度学习模型注册了情绪智力和社会智力之间较高的正相似度,得出两者之间的相似系数大于99.84%。这种相似性使得未来的研究人员可以借助社会智力来计算人类的情商。这种灵活性也允许使用社交网络上可用的大数据来计算个人的情商。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Cmc-computers Materials & Continua
Cmc-computers Materials & Continua 工程技术-材料科学:综合
CiteScore
5.30
自引率
19.40%
发文量
345
审稿时长
1 months
期刊介绍: This journal publishes original research papers in the areas of computer networks, artificial intelligence, big data management, software engineering, multimedia, cyber security, internet of things, materials genome, integrated materials science, data analysis, modeling, and engineering of designing and manufacturing of modern functional and multifunctional materials. Novel high performance computing methods, big data analysis, and artificial intelligence that advance material technologies are especially welcome.
期刊最新文献
Estimating Fuel-Efficient Air Plane Trajectories Using Machine Learning 2D Finite Element Analysis of Asynchronous Machine Influenced Under Power Quality Perturbations Multi-Attribute Selection Procedures Based on Regret and Rejoice for the Decision-Maker Disease Diagnosis System Using IoT Empowered with Fuzzy Inference System Automated Grading of Breast Cancer Histopathology Images Using Multilayered Autoencoder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1