{"title":"Unsupervised Temporal-Adaptation with Multiple Geodesic Flow Kernels for Hyperspectral Image Classification","authors":"Tianzhu Liu, Yanfeng Gu","doi":"10.1109/IGARSS.2019.8898677","DOIUrl":null,"url":null,"abstract":"The miniaturization of hyperspectral sensors and the popularity of the unmanned aerial vehicle (UAV) make it possible to obtain a series of hyperspectral images (HSIs) in the same geographical area at different time-points by same or different sensors. When classifying these multi-temporal HSIs, temporal-adaptation is required to deal with the spectral drift and band inconsistency problems. Since most studies focus on semi-supervised domain adaptation (DA) strategy, and spatial features are usually absent during most of the DA procedure, an unsupervised temporal-adaptation method is realized by spatial-spectral multiple Geodesic Flow Kernels (S2-GFKs) to classify bi-temporal HSIs. Experiments conducted on two real HSI datasets and compared with several well-known methods demonstrate the availability of the proposed model.","PeriodicalId":13262,"journal":{"name":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","volume":"46 1","pages":"10111-10114"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS.2019.8898677","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
The miniaturization of hyperspectral sensors and the popularity of the unmanned aerial vehicle (UAV) make it possible to obtain a series of hyperspectral images (HSIs) in the same geographical area at different time-points by same or different sensors. When classifying these multi-temporal HSIs, temporal-adaptation is required to deal with the spectral drift and band inconsistency problems. Since most studies focus on semi-supervised domain adaptation (DA) strategy, and spatial features are usually absent during most of the DA procedure, an unsupervised temporal-adaptation method is realized by spatial-spectral multiple Geodesic Flow Kernels (S2-GFKs) to classify bi-temporal HSIs. Experiments conducted on two real HSI datasets and compared with several well-known methods demonstrate the availability of the proposed model.