Impedance Implementation Pattern for PCB Design

Gary Tsai, Denis Chen
{"title":"Impedance Implementation Pattern for PCB Design","authors":"Gary Tsai, Denis Chen","doi":"10.1109/IMPACT56280.2022.9966632","DOIUrl":null,"url":null,"abstract":"The modern communication system, data center and electronics devices deign, are facing increasing challenges in power delivery network design, besides the well-known signal integrity design challenges. In order to make sure the designed product works well to meet design quality, normally platform design guideline will be provided bt Chip suppliers to OEMs or ODMs before OEMs/ODMs product design phase.For Power Delivery Network design, the impedance curve Z(f) from simulation of power rails (like core power, graphic power or memory power…etc.) is required to meet Chip suppliers’ impedance curve Z(f) criteria in each generation of platform. Some customers may not perform Power Integrity (PI) simulation to check if the impedance curve Z(f) of the board power routings can pass Load Line (LL) specification due to resource limitation, no matter in tools or human resource. Instead of relying on actual validation to see if any issue is related to the power rail design.From PI simulation point of view, adding more power shapes/planes or de-coupling capacitors can help to reduce Z(f) value to meet the criteria easily and get better power design quality. If the customers don’t have resource to do PI simulation, they will try to modify the power rail routings in next board re-spin (to add more planes/shapes or de-coupling capacitors) to improved power design quality when the power validation had issue. It will cause additional time and money. If one small symbol pattern can be reserved in board power layout in advanced, it can help to save the PCB re-spin time if the power design hit validation issue.","PeriodicalId":13517,"journal":{"name":"Impact","volume":"32 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Impact","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMPACT56280.2022.9966632","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The modern communication system, data center and electronics devices deign, are facing increasing challenges in power delivery network design, besides the well-known signal integrity design challenges. In order to make sure the designed product works well to meet design quality, normally platform design guideline will be provided bt Chip suppliers to OEMs or ODMs before OEMs/ODMs product design phase.For Power Delivery Network design, the impedance curve Z(f) from simulation of power rails (like core power, graphic power or memory power…etc.) is required to meet Chip suppliers’ impedance curve Z(f) criteria in each generation of platform. Some customers may not perform Power Integrity (PI) simulation to check if the impedance curve Z(f) of the board power routings can pass Load Line (LL) specification due to resource limitation, no matter in tools or human resource. Instead of relying on actual validation to see if any issue is related to the power rail design.From PI simulation point of view, adding more power shapes/planes or de-coupling capacitors can help to reduce Z(f) value to meet the criteria easily and get better power design quality. If the customers don’t have resource to do PI simulation, they will try to modify the power rail routings in next board re-spin (to add more planes/shapes or de-coupling capacitors) to improved power design quality when the power validation had issue. It will cause additional time and money. If one small symbol pattern can be reserved in board power layout in advanced, it can help to save the PCB re-spin time if the power design hit validation issue.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PCB设计的阻抗实现模式
现代通信系统、数据中心和电子设备的设计,除了众所周知的信号完整性设计挑战外,输电网络的设计也面临着越来越大的挑战。为了确保设计的产品能够很好地满足设计质量,通常在oem / odm产品设计阶段之前,芯片供应商会向oem或odm提供平台设计指南。在Power Delivery Network设计中,从电源轨(如核心功率、图形功率或存储器功率等)仿真得到的阻抗曲线Z(f)要求满足芯片供应商每一代平台的阻抗曲线Z(f)标准。部分客户可能由于工具或人力资源的限制,无法对单板电源走线阻抗曲线Z(f)通过LL (Load Line)规范进行PI (Power Integrity)仿真。而不是依靠实际验证来查看是否有任何问题与电源导轨设计有关。从PI仿真的角度来看,增加更多的功率形状/平面或去耦电容有助于降低Z(f)值,使其更容易满足标准,从而获得更好的功率设计质量。如果客户没有资源进行PI模拟,他们将尝试在下一次电路板重新旋转时修改电源轨道路由(添加更多平面/形状或解耦电容器),以在电源验证出现问题时提高电源设计质量。这将造成额外的时间和金钱。如果能提前在电路板电源布局中预留一个小的符号图案,在电源设计遇到验证问题时,可以节省PCB重新旋转的时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Systematising clustering techniques through cross-disciplinary research, leading to the development of new methods Overview of the research work of Dr. Hui-Ping Chuang Scaling up innovation: European Innovation Council Research on optical computing system architecture for simple recurrent neural networks Next-generation healthcare infrastructure based on cross-layer optimization of biosignal sensing and communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1