Vibration Suppression for Large-Scale Flexible Structures Using Deep Reinforcement Learning Based on Cable-Driven Parallel Robots

Haining Sun, Xiaoqiang Tang, Wei Jinhao
{"title":"Vibration Suppression for Large-Scale Flexible Structures Using Deep Reinforcement Learning Based on Cable-Driven Parallel Robots","authors":"Haining Sun, Xiaoqiang Tang, Wei Jinhao","doi":"10.1115/IMECE2020-23259","DOIUrl":null,"url":null,"abstract":"\n Specific satellites with ultra-long wings play a crucial role in many fields. However, external disturbance and self-rotation could result in undesired vibrations of flexible wings, which affects the normal operation of the satellites. In severe cases, the satellites will be damaged. Therefore, it is imperative to conduct vibration suppression for these flexible structures. Utilizing deep reinforcement learning (DRL), an active control scheme is presented in this paper to rapidly suppress the vibration of flexible structures with quite small controllable force based on a cable-driven parallel robot (CDPR). To verify the controller’s effectiveness, three groups of simulation with different initial disturbance are implemented. Besides, to enhance the contrast, a passive pre-tightening scheme is also tested. First, the dynamic model of the CDPR that is comprised of four cables and a flexible structure is established using the finite element method. Then, the dynamic behavior of the model under the controllable cable force is analyzed by Newmark-ß method. Furthermore, the agent of DRL is trained by the deep deterministic policy gradient algorithm (DDPG). Finally, the control scheme is conducted on Simulink environment to evaluate its performance, and the results are satisfactory, which validates the controller’s ability to suppress vibrations.","PeriodicalId":23585,"journal":{"name":"Volume 7A: Dynamics, Vibration, and Control","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 7A: Dynamics, Vibration, and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/IMECE2020-23259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Specific satellites with ultra-long wings play a crucial role in many fields. However, external disturbance and self-rotation could result in undesired vibrations of flexible wings, which affects the normal operation of the satellites. In severe cases, the satellites will be damaged. Therefore, it is imperative to conduct vibration suppression for these flexible structures. Utilizing deep reinforcement learning (DRL), an active control scheme is presented in this paper to rapidly suppress the vibration of flexible structures with quite small controllable force based on a cable-driven parallel robot (CDPR). To verify the controller’s effectiveness, three groups of simulation with different initial disturbance are implemented. Besides, to enhance the contrast, a passive pre-tightening scheme is also tested. First, the dynamic model of the CDPR that is comprised of four cables and a flexible structure is established using the finite element method. Then, the dynamic behavior of the model under the controllable cable force is analyzed by Newmark-ß method. Furthermore, the agent of DRL is trained by the deep deterministic policy gradient algorithm (DDPG). Finally, the control scheme is conducted on Simulink environment to evaluate its performance, and the results are satisfactory, which validates the controller’s ability to suppress vibrations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于缆索驱动并联机器人的深度强化学习抑制大型柔性结构振动
具有超长翼的特殊卫星在许多领域发挥着至关重要的作用。然而,外部扰动和自旋会导致柔性翼产生不期望的振动,影响卫星的正常运行。在严重的情况下,卫星将被损坏。因此,对这些柔性结构进行减振势在必行。利用深度强化学习(DRL),提出了一种基于索驱动并联机器人(CDPR)的主动控制方案,以较小的可控力快速抑制柔性结构的振动。为了验证控制器的有效性,进行了三组不同初始扰动的仿真。此外,为了增强对比,还试验了一种被动预紧方案。首先,采用有限元法建立了由四根索和柔性结构组成的CDPR的动力学模型。然后,用Newmark-ß法分析了模型在可控索力作用下的动力特性。在此基础上,采用深度确定性策略梯度算法(deep deterministic policy gradient algorithm, DDPG)训练DRL智能体。最后,在Simulink环境下对该控制方案进行了性能评估,结果令人满意,验证了该控制器抑制振动的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware-in-the-Loop Simulation for Large-Scale Applications Multi-Degree-of-Freedom Modeling for Electric Powertrains: Inertia Effect of Engine Mounting System On Structural Damping Characteristics in the Electro-Mechanical Impedance Method A Framework for Spatial 3D Collision Models: Theory and Validation Deep Neural Network Real-Time Control of a Motorized Functional Electrical Stimulation Cycle With an Uncertain Time-Varying Electromechanical Delay
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1