Nitrogen retention capacity of paddy soil improved under long-term garlic-rice rotation

Wei Zhou, Yanqiu Chen, Zhitao Hu, Yu Fan, Yihong Kuang, Tao Wang, Yong Chen, F. Deng, X. Lei, Jianfeng Hu, Youfeng Tao, Hong Cheng, W. Ren
{"title":"Nitrogen retention capacity of paddy soil improved under long-term garlic-rice rotation","authors":"Wei Zhou, Yanqiu Chen, Zhitao Hu, Yu Fan, Yihong Kuang, Tao Wang, Yong Chen, F. Deng, X. Lei, Jianfeng Hu, Youfeng Tao, Hong Cheng, W. Ren","doi":"10.1080/09064710.2023.2167668","DOIUrl":null,"url":null,"abstract":"ABSTRACT Although significant differences in soil nitrogen levels exist under different paddy-upland rotations, the main reason for this is unclear. The nitrogen retention capacity and loss of ammonia volatilisation, leaching, etc. of paddy soil with large differences in nitrogen levels from two long-term rotations, garlic-rice and wheat-rice, were measured using the soil column simulation method. The results showed that the loss rate of leaching was only 5.4%, whereas that of ammonia volatilisation was up to 22.8%, which was the main nitrogen loss way of paddy soil under the two rotations. The average ammonia volatilisation rates under wheat-rice rotation with high and low nitrogen application rates were 12.1% and 40.2% higher than that under garlic-rice rotation, leading to a decrease in the total nitrogen loss amount and rate through ammonia volatilisation by 29.8% and 8.8%, respectively. As a result, nitrogen retention in the soil under garlic-rice rotation increased by 12.7%. In conclusion, the long-term garlic-rice rotation could significantly inhibit ammonia volatilisation, thus improving the soil nitrogen retention capacity. The straw return may increase soil organic matter content, reduce ammonia volatilisation loss, and enhance soil nitrogen retention capacity and productivity.","PeriodicalId":40817,"journal":{"name":"Acta Agriculturae Scandinavica Section B-Soil and Plant Science","volume":"57 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Agriculturae Scandinavica Section B-Soil and Plant Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1080/09064710.2023.2167668","RegionNum":4,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT Although significant differences in soil nitrogen levels exist under different paddy-upland rotations, the main reason for this is unclear. The nitrogen retention capacity and loss of ammonia volatilisation, leaching, etc. of paddy soil with large differences in nitrogen levels from two long-term rotations, garlic-rice and wheat-rice, were measured using the soil column simulation method. The results showed that the loss rate of leaching was only 5.4%, whereas that of ammonia volatilisation was up to 22.8%, which was the main nitrogen loss way of paddy soil under the two rotations. The average ammonia volatilisation rates under wheat-rice rotation with high and low nitrogen application rates were 12.1% and 40.2% higher than that under garlic-rice rotation, leading to a decrease in the total nitrogen loss amount and rate through ammonia volatilisation by 29.8% and 8.8%, respectively. As a result, nitrogen retention in the soil under garlic-rice rotation increased by 12.7%. In conclusion, the long-term garlic-rice rotation could significantly inhibit ammonia volatilisation, thus improving the soil nitrogen retention capacity. The straw return may increase soil organic matter content, reduce ammonia volatilisation loss, and enhance soil nitrogen retention capacity and productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
长期大蒜-水稻轮作提高了水稻土的保氮能力
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.40
自引率
0.00%
发文量
56
审稿时长
2.3 months
期刊介绍: Acta Agriculturæ Scandinavica Section B publishes original research in applied soil and plant science with special attention given to to crop production in agri- and horticultural systems. We welcome manuscripts dealing with: Climate smart and sustainable crop production systems Water and nutrient efficiency Soil conservation and productivity Precise agriculture systems Applications of bio- and nanotechnology Digitalisation and robotics Soil-plant interactions Acta Agriculturæ Scandinavica, Section B – Soil & Plant Science forms part of a series of titles published on behalf of the Nordic Association of Agricultural Science (NJF). The series also includes Section A - Animal Science .
期刊最新文献
Nodulation performance and agronomic traits of European common bean (Phaseolus vulgaris L.) genetic resources Pomological, organoleptic, and biochemical values of Norwegian heritage apple cultivars Sugar content and dry matter are key factors predicting sprouting of yellow bulb onions regardless of treatment with maleic hydrazide Short communication: morphophysiological response of kaffir lime (Citrus hystrix DC) subjected to defoliation and drought stress Quantitative and qualitative yield loss caused by red deer (Cervus elaphus L.) grazing on permanent organic grasslands
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1