Effective league championship algorithm and lower bound procedure for scheduling a single batch-processing machine with non-identical job sizes and job rejection
{"title":"Effective league championship algorithm and lower bound procedure for scheduling a single batch-processing machine with non-identical job sizes and job rejection","authors":"Saeedeh Afkhami, A. H. Kashan, B. Ostadi","doi":"10.1051/ro/2023050","DOIUrl":null,"url":null,"abstract":"We address the scheduling problem of a set of non-identical size jobs on a single batch-processing machine (SBPM) wherein the scheduler can make decision whether to schedule a job in batches or not to schedule it with a job-dependent penalty. The processing time of a batch is the greatest job processing time in that batch (parallel batching or p-batching). The scheduler wants to minimize a given objective function f, where f is the sum total of the rejection penalties of the rejected jobs (rejection cost) plus the makespan of the scheduled ones. We formulate the aforementioned problem as a 0-1 mixed integer programming model. We also apply an effective dynamic programming algorithm (DPA) to calculate a lower bound (LB) on the optimal cost of the problem. To tackle the problem, we propose a grouping algorithm, based on league championship algorithm (LCA), with new updating equations maintaining the major characteristics of the original updating equations of the LCA and well-suited to the structure of the problem. For small problems, performance of the proposed LCA is compared with GAMS/CPLEX solver. For large-scale instances, a genetic algorithm is adopted as a basis for comparison. Simulated experiments confirm the performance of the proposed methods.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We address the scheduling problem of a set of non-identical size jobs on a single batch-processing machine (SBPM) wherein the scheduler can make decision whether to schedule a job in batches or not to schedule it with a job-dependent penalty. The processing time of a batch is the greatest job processing time in that batch (parallel batching or p-batching). The scheduler wants to minimize a given objective function f, where f is the sum total of the rejection penalties of the rejected jobs (rejection cost) plus the makespan of the scheduled ones. We formulate the aforementioned problem as a 0-1 mixed integer programming model. We also apply an effective dynamic programming algorithm (DPA) to calculate a lower bound (LB) on the optimal cost of the problem. To tackle the problem, we propose a grouping algorithm, based on league championship algorithm (LCA), with new updating equations maintaining the major characteristics of the original updating equations of the LCA and well-suited to the structure of the problem. For small problems, performance of the proposed LCA is compared with GAMS/CPLEX solver. For large-scale instances, a genetic algorithm is adopted as a basis for comparison. Simulated experiments confirm the performance of the proposed methods.