THE NECESSARY CONDITION FOR COINCIDENCE OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF CORRELATED DEVIATIONS
{"title":"THE NECESSARY CONDITION FOR COINCIDENCE OF LS AND AITKEN ESTIMATIONS OF THE HIGHER COEFFICIENT OF THE LINEAR REGRESSION MODEL IN THE CASE OF CORRELATED DEVIATIONS","authors":"M. Savkina","doi":"10.17721/2706-9699.2022.2.14","DOIUrl":null,"url":null,"abstract":"At the paper a linear regression model whose function has the form $f (x)=ax + b$, $a$ and $b$ — unknown parameters, is studied. Approximate values (observations) of functions $f(x)$ are registered at equidistant points $x_0,x_1,...,x_n$ of a line segment. It is also assumed that the covariance matrix of deviations is the symmetric Toeplitz matrix. Among all Toeplitz matrices, a family of matrices is selected for which all diagonals parallel to the main, starting from the $(k+1)$th, are zero, $k=n/2$, $n$ — even. Elements of the main diagonal are denoted by $\\lambda$, elements of the $k$th diagonal are denoted by $c$, elements of the $j$th diagonal are denoted by $c_{k-j}$, $j=1,2,...,k-1$. The theorem proved in the article states that the following condition on the elements of such covariance matrix $c_j=\\bigl(k/(k+1)\\bigr)^j c$, $j=1,2,...,k-1$, is necessary for the coincidence of the LS and Aitken's estimations of the parameter $a$ of this model. Values $\\lambda$ and $c$ are any that ensure the positive definiteness of such matrix.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"57 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
At the paper a linear regression model whose function has the form $f (x)=ax + b$, $a$ and $b$ — unknown parameters, is studied. Approximate values (observations) of functions $f(x)$ are registered at equidistant points $x_0,x_1,...,x_n$ of a line segment. It is also assumed that the covariance matrix of deviations is the symmetric Toeplitz matrix. Among all Toeplitz matrices, a family of matrices is selected for which all diagonals parallel to the main, starting from the $(k+1)$th, are zero, $k=n/2$, $n$ — even. Elements of the main diagonal are denoted by $\lambda$, elements of the $k$th diagonal are denoted by $c$, elements of the $j$th diagonal are denoted by $c_{k-j}$, $j=1,2,...,k-1$. The theorem proved in the article states that the following condition on the elements of such covariance matrix $c_j=\bigl(k/(k+1)\bigr)^j c$, $j=1,2,...,k-1$, is necessary for the coincidence of the LS and Aitken's estimations of the parameter $a$ of this model. Values $\lambda$ and $c$ are any that ensure the positive definiteness of such matrix.