{"title":"Increasing the Cooling Rate of the Vapor Compression Cycle by Heating","authors":"M. Abd-Elhady, E. Bishara, M. A. Halim","doi":"10.1142/S2010132521500097","DOIUrl":null,"url":null,"abstract":"Refrigeration and air conditioning cycles consume a large amount of electrical energy and the shortage in traditional sources of energy is the main reasons for governments to use renewable energy. The most power consuming part in the Vapor Compression Cycle (VCC) is the gas compressor. Therefore, the objective of this research is to increase the cooling rate of the VCC using the same compressor, and that is done by heating the refrigerant coming out from the compressor. The proposed cycle is similar to the VCC except that the compression processes is done in two stages, the first stage via a gas compressor and in the second stage by heating the refrigerant under constant volume. The heating process can be done using solar energy. An experimental setup has been developed to study the influence of heating the refrigerant on the cooling rate of the VCC. The heating process is performed after the compressor, and it is done under constant volume in order to increase the pressure of the refrigerant. Four experiments have been performed; the first experiment is a normal VCC, i.e., without heating, while in the second, third and fourth experiments, the refrigerant has been heated to 50∘C, 100∘C and 150∘C, respectively. It has been found that the cooling power increases with the heating temperature. Heating increases the pressure of the refrigerant in VCC, and consequently increases the mass flow rate of the refrigerant that results in an increase in the refrigeration power for the same compressor power. However, the disadvantage of heating the refrigerant is that it increases the evaporator temperature, which limits the possibility of the VCC to be used in freezing applications.","PeriodicalId":13757,"journal":{"name":"International Journal of Air-conditioning and Refrigeration","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2021-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Air-conditioning and Refrigeration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/S2010132521500097","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 2
Abstract
Refrigeration and air conditioning cycles consume a large amount of electrical energy and the shortage in traditional sources of energy is the main reasons for governments to use renewable energy. The most power consuming part in the Vapor Compression Cycle (VCC) is the gas compressor. Therefore, the objective of this research is to increase the cooling rate of the VCC using the same compressor, and that is done by heating the refrigerant coming out from the compressor. The proposed cycle is similar to the VCC except that the compression processes is done in two stages, the first stage via a gas compressor and in the second stage by heating the refrigerant under constant volume. The heating process can be done using solar energy. An experimental setup has been developed to study the influence of heating the refrigerant on the cooling rate of the VCC. The heating process is performed after the compressor, and it is done under constant volume in order to increase the pressure of the refrigerant. Four experiments have been performed; the first experiment is a normal VCC, i.e., without heating, while in the second, third and fourth experiments, the refrigerant has been heated to 50∘C, 100∘C and 150∘C, respectively. It has been found that the cooling power increases with the heating temperature. Heating increases the pressure of the refrigerant in VCC, and consequently increases the mass flow rate of the refrigerant that results in an increase in the refrigeration power for the same compressor power. However, the disadvantage of heating the refrigerant is that it increases the evaporator temperature, which limits the possibility of the VCC to be used in freezing applications.
期刊介绍:
As the only international journal in the field of air-conditioning and refrigeration in Asia, IJACR reports researches on the equipments for controlling indoor environment and cooling/refrigeration. It includes broad range of applications and underlying theories including fluid dynamics, thermodynamics, heat transfer, and nano/bio-related technologies. In addition, it covers future energy technologies, such as fuel cell, wind turbine, solar cell/heat, geothermal energy and etc.