Improved properties of Al matrix composites reinforced with Ni-coated β-Si3N4 whiskers

IF 2.1 4区 材料科学 Q3 MATERIALS SCIENCE, COMPOSITES Composite Interfaces Pub Date : 2023-05-11 DOI:10.1080/09276440.2023.2204252
Fayu Li, Jinwei Yin, Dongxu Yao, Yongfeng Xia, Hanqin Liang, Yuping Zeng
{"title":"Improved properties of Al matrix composites reinforced with Ni-coated β-Si3N4 whiskers","authors":"Fayu Li, Jinwei Yin, Dongxu Yao, Yongfeng Xia, Hanqin Liang, Yuping Zeng","doi":"10.1080/09276440.2023.2204252","DOIUrl":null,"url":null,"abstract":"ABSTRACT In order to enhance the interfacial bonding between aluminum and β-Si3N4 whiskers in Al matrix composites (AMCs), Ni coating was deposited on the surface of β-Si3N4 whiskers using an electroless plating method. The interfacial test results showed that Ni coating was successfully deposited on the surface of β-Si3N4 whiskers and the whiskers were well bonded with Al matrix without pores. In addition, the whiskers were homogeneously dispersed in the Al matrix. The effect of Ni-coated β-Si3N4 whiskers on the mechanical properties of composites was investigated in detail. Densification and the mechanical performance of AMCs reinforced by Ni coated β-Si3N4 whiskers (NSAMCs) were improved comparing to that of AMCs reinforced by uncoated β-Si3N4 whiskers (USAMCs). The maximum value of tensile strength and bending strength reached up to 290 MPa and 487 MPa, when the Ni content was 0.9 vol.% and the β-Si3N4 whiskers content was 20 wt.%, respectively. However, excessive Ni content weakened the strengthening effect. Medium Ni coating on β-Si3N4 whiskers significantly optimized the interface and improved the performance of the composites. GRAPHICAL ABSTRACT","PeriodicalId":10653,"journal":{"name":"Composite Interfaces","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-05-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09276440.2023.2204252","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT In order to enhance the interfacial bonding between aluminum and β-Si3N4 whiskers in Al matrix composites (AMCs), Ni coating was deposited on the surface of β-Si3N4 whiskers using an electroless plating method. The interfacial test results showed that Ni coating was successfully deposited on the surface of β-Si3N4 whiskers and the whiskers were well bonded with Al matrix without pores. In addition, the whiskers were homogeneously dispersed in the Al matrix. The effect of Ni-coated β-Si3N4 whiskers on the mechanical properties of composites was investigated in detail. Densification and the mechanical performance of AMCs reinforced by Ni coated β-Si3N4 whiskers (NSAMCs) were improved comparing to that of AMCs reinforced by uncoated β-Si3N4 whiskers (USAMCs). The maximum value of tensile strength and bending strength reached up to 290 MPa and 487 MPa, when the Ni content was 0.9 vol.% and the β-Si3N4 whiskers content was 20 wt.%, respectively. However, excessive Ni content weakened the strengthening effect. Medium Ni coating on β-Si3N4 whiskers significantly optimized the interface and improved the performance of the composites. GRAPHICAL ABSTRACT
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ni包覆β-Si3N4晶须增强Al基复合材料性能的改善
摘要:为了增强铝基复合材料(AMCs)中铝与β-Si3N4晶须之间的界面结合,采用化学镀方法在β-Si3N4晶须表面沉积Ni涂层。界面测试结果表明,Ni涂层成功沉积在β-Si3N4晶须表面,晶须与Al基体结合良好,无气孔。晶须均匀地分散在Al基体中。研究了ni包覆β-Si3N4晶须对复合材料力学性能的影响。与未包覆的β-Si3N4晶须(USAMCs)相比,经Ni包覆的β-Si3N4晶须(NSAMCs)增强的AMCs的致密性和力学性能得到了改善。当Ni含量为0.9 vol.%, β-Si3N4晶须含量为20 wt.%时,合金的抗拉强度和抗弯强度分别达到290 MPa和487 MPa。但过量的Ni含量削弱了强化效果。在β-Si3N4晶须上涂覆中镍,显著优化了界面,提高了复合材料的性能。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Composite Interfaces
Composite Interfaces 工程技术-材料科学:复合
CiteScore
5.00
自引率
3.80%
发文量
58
审稿时长
3 months
期刊介绍: Composite Interfaces publishes interdisciplinary scientific and engineering research articles on composite interfaces/interphases and their related phenomena. Presenting new concepts for the fundamental understanding of composite interface study, the journal balances interest in chemistry, physical properties, mechanical properties, molecular structures, characterization techniques and theories. Composite Interfaces covers a wide range of topics including - but not restricted to: -surface treatment of reinforcing fibers and fillers- effect of interface structure on mechanical properties, physical properties, curing and rheology- coupling agents- synthesis of matrices designed to promote adhesion- molecular and atomic characterization of interfaces- interfacial morphology- dynamic mechanical study of interphases- interfacial compatibilization- adsorption- tribology- composites with organic, inorganic and metallic materials- composites applied to aerospace, automotive, appliances, electronics, construction, marine, optical and biomedical fields
期刊最新文献
Characterization of composite materials with recycled wind turbine blade additives using atomic force microscopy Does a polymer film due to Rayleigh-instability affect interfacial properties measured by microbond test? Influence of argon plasma treatment on interfacial performance of CFRP at high temperature Hygrothermal effect and statistical analysis of the interfacial performance of nano and microscale polymer composites Synergistic effect of silver nanoparticles decorated graphene quantum dots nanohybrids reinforced polyaniline ternary nanocomposites on optical, thermal, and dielectric properties
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1