B. Nash, N. Goldring, J. Edelen, S. Webb, R. Celestre
{"title":"Propagation of partially coherent radiation using Wigner functions","authors":"B. Nash, N. Goldring, J. Edelen, S. Webb, R. Celestre","doi":"10.1103/PHYSREVACCELBEAMS.24.010702","DOIUrl":null,"url":null,"abstract":"Undulator radiation from synchrotron light sources must be transported down a beamline from the source to the sample. A partially coherent photon beam may be represented in phase space using a Wigner function, and its transport may use some similar techniques as is familiar in particle beam transport. We describe this process in the case that the beamline is composed of linear focusing and defocusing sections as well as apertures. We present a compact representation of the beamline map involving linear transformations and convolutions. We create a 1:1 imaging system (4f system) with a single slit on the image plane and observe the radiation downstream to it. We propagate a Gaussian beam and undulator radiation down this sample beamline, drawing parameters from current and future ultra low emittance light sources. We derive an analytic expression for the partially coherent Gaussian case including passage through a single slit aperture. We benchmark the Wigner function calculation against the analytical expression and a partially coherent calculation in the Synchrotron Radiation Workshop (SRW) code.","PeriodicalId":8436,"journal":{"name":"arXiv: Accelerator Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Accelerator Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1103/PHYSREVACCELBEAMS.24.010702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
Undulator radiation from synchrotron light sources must be transported down a beamline from the source to the sample. A partially coherent photon beam may be represented in phase space using a Wigner function, and its transport may use some similar techniques as is familiar in particle beam transport. We describe this process in the case that the beamline is composed of linear focusing and defocusing sections as well as apertures. We present a compact representation of the beamline map involving linear transformations and convolutions. We create a 1:1 imaging system (4f system) with a single slit on the image plane and observe the radiation downstream to it. We propagate a Gaussian beam and undulator radiation down this sample beamline, drawing parameters from current and future ultra low emittance light sources. We derive an analytic expression for the partially coherent Gaussian case including passage through a single slit aperture. We benchmark the Wigner function calculation against the analytical expression and a partially coherent calculation in the Synchrotron Radiation Workshop (SRW) code.