Theoretical Investigation on Free Radical Scavenging Activity of 6,7‐Dihydroxyflavone

Hong-yu Zhang
{"title":"Theoretical Investigation on Free Radical Scavenging Activity of 6,7‐Dihydroxyflavone","authors":"Hong-yu Zhang","doi":"10.1002/(SICI)1521-3838(200002)19:1<50::AID-QSAR50>3.0.CO;2-#","DOIUrl":null,"url":null,"abstract":"The difference of heat of formation between parent molecule and its free radical (ΔHOF), calculated by semiempirical quantum chemical method AM1, was employed as a theoretical index to characterize the O–H bond dissociation energy (BDE) of antioxidant. Through a comparison between ΔHOF of model molecules, it was found that 6,7-dihydroxyflavone (DHF) possessed two favorable structural factors, the presence of ortho hydroxyls and the existence of para oxygen, to weaken its O–H bond at position 6, but the passive effect produced by electron-withdrawing property of the chromonoid ring C surpassed the active effect of the para oxygen. Therefore the free radical scavenging activity of DHF was lower than that of quercetin which possessed catecholic hydroxyl in ring B and was scarcely influenced by ring C. As a result of the analysis, two more active flavonoid antioxidants were constructed theoretically.","PeriodicalId":20818,"journal":{"name":"Quantitative Structure-activity Relationships","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantitative Structure-activity Relationships","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/(SICI)1521-3838(200002)19:1<50::AID-QSAR50>3.0.CO;2-#","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

The difference of heat of formation between parent molecule and its free radical (ΔHOF), calculated by semiempirical quantum chemical method AM1, was employed as a theoretical index to characterize the O–H bond dissociation energy (BDE) of antioxidant. Through a comparison between ΔHOF of model molecules, it was found that 6,7-dihydroxyflavone (DHF) possessed two favorable structural factors, the presence of ortho hydroxyls and the existence of para oxygen, to weaken its O–H bond at position 6, but the passive effect produced by electron-withdrawing property of the chromonoid ring C surpassed the active effect of the para oxygen. Therefore the free radical scavenging activity of DHF was lower than that of quercetin which possessed catecholic hydroxyl in ring B and was scarcely influenced by ring C. As a result of the analysis, two more active flavonoid antioxidants were constructed theoretically.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
6,7‐二羟黄酮清除自由基活性的理论研究
采用半经验量子化学方法AM1计算母分子与自由基(ΔHOF)之间的生成热差作为表征抗氧化剂O-H键离解能(BDE)的理论指标。通过对模型分子ΔHOF的比较,发现6,7-二羟黄酮(DHF)具有邻羟基和对氧两种有利的结构因素,可以削弱其6位O-H键,但类色环C的吸电子性质产生的被动作用超过了对氧的主动作用。因此,DHF的自由基清除活性低于含有B环儿茶酚羟基且不受c环影响的槲皮素。通过分析,理论上构建了两种活性更高的类黄酮抗氧化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Abstracts of publications related to QASR Mechanistic Study on N‐Demethylation Catalyzed with P450 by Quantitative Structure Activity Relationship using Electronic Properties of 4‐Substituted N,N‐Dimethylaniline 3D QSAR of Serotonin Transporter Ligands: CoMFA and CoMSIA Studies Scaffold Searching: Automated Identification of Similar Ring Systems for the Design of Combinatorial Libraries Theoretical Prediction of the Phenoxyl Radical Formation Capacity and Cyclooxygenase Inhibition Relationships by Phenolic Compounds
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1