Module Extraction for Efficient Object Queries over Ontologies with Large ABoxes.

Jia Xu, Patrick Shironoshita, U. Visser, N. John, M. Kabuka
{"title":"Module Extraction for Efficient Object Queries over Ontologies with Large ABoxes.","authors":"Jia Xu, Patrick Shironoshita, U. Visser, N. John, M. Kabuka","doi":"10.15764/AIA.2015.01002","DOIUrl":null,"url":null,"abstract":"The extraction of logically-independent fragments out of an ontology ABox can be useful for solving the tractability problem of querying ontologies with large ABoxes. In this paper, we propose a formal definition of an ABox module, such that it guarantees complete preservation of facts about a given set of individuals, and thus can be reasoned independently w.r.t. the ontology TBox. With ABox modules of this type, isolated or distributed (parallel) ABox reasoning becomes feasible, and more efficient data retrieval from ontology ABoxes can be attained. To compute such an ABox module, we present a theoretical approach and also an approximation for SHIQ ontologies. Evaluation of the module approximation on different types of ontologies shows that, on average, extracted ABox modules are significantly smaller than the entire ABox, and the time for ontology reasoning based on ABox modules can be improved significantly.","PeriodicalId":91205,"journal":{"name":"Artificial intelligence and applications (Commerce, Calif.)","volume":"59 1","pages":"8-31"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial intelligence and applications (Commerce, Calif.)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15764/AIA.2015.01002","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

The extraction of logically-independent fragments out of an ontology ABox can be useful for solving the tractability problem of querying ontologies with large ABoxes. In this paper, we propose a formal definition of an ABox module, such that it guarantees complete preservation of facts about a given set of individuals, and thus can be reasoned independently w.r.t. the ontology TBox. With ABox modules of this type, isolated or distributed (parallel) ABox reasoning becomes feasible, and more efficient data retrieval from ontology ABoxes can be attained. To compute such an ABox module, we present a theoretical approach and also an approximation for SHIQ ontologies. Evaluation of the module approximation on different types of ontologies shows that, on average, extracted ABox modules are significantly smaller than the entire ABox, and the time for ontology reasoning based on ABox modules can be improved significantly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向大箱体本体的高效对象查询模块提取。
从本体ABox中提取逻辑独立的片段可以用于解决具有大型ABox的本体查询的可跟踪性问题。在本文中,我们提出了一个ABox模块的形式化定义,这样它保证了关于一组给定个体的事实的完整保存,从而可以在本体TBox之外独立地进行推理。有了这种类型的ABox模块,孤立或分布式(并行)ABox推理变得可行,并且可以从本体ABox中获得更高效的数据检索。为了计算这样一个ABox模块,我们提出了一个理论方法和SHIQ本体的近似。对不同类型本体上的模块近似评价表明,平均而言,提取的ABox模块明显小于整个ABox,基于ABox模块的本体推理时间可以显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Methodology of Measurement Intellectualization based on Regularized Bayesian Approach in Uncertain Conditions Stochastic Dual Coordinate Ascent for Learning Sign Constrained Linear Predictors Data Smoothing Filling Method based on ScRNA-Seq Data Zero-Value Identification Batch-Stochastic Sub-Gradient Method for Solving Non-Smooth Convex Loss Function Problems Teaching Reading Skills More Effectively
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1