M. D. Kamitsou, Elias Kostakopoulos, D. Kanellopoulou, V. Hallet, Petrica Petrica, A. Christogerou, G. Angelopoulos
{"title":"Formation, Characterization and SEM Microanalysis of Yeelimite","authors":"M. D. Kamitsou, Elias Kostakopoulos, D. Kanellopoulou, V. Hallet, Petrica Petrica, A. Christogerou, G. Angelopoulos","doi":"10.3390/materproc2021005106","DOIUrl":null,"url":null,"abstract":"Yeelimite is one of the main components of SulfoBelite (SB) and Calcium SulfoAluminate cements which are promising low carbon alternatives to Portland ones. In this study, stoichiometric yeelimite, obtained at different temperatures, was characterized by XRD, Q-XRD and SEM-EDS. Additionally, mortars of the synthetic yeelimite, with and without standard sand, were studied in terms of the development of strength over time. The main result is that high yeelimite content samples were prepared by mixing stoichiometric quantities of analytical-grade raw materials at 1330 °C for 3 h soaking time, followed by rapid cooling. Moreover, an increase in the formed yeelimite results in increased strength values that meet the requirements to be classified at CEM 32.5.","PeriodicalId":18729,"journal":{"name":"Materials Proceedings","volume":"13 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/materproc2021005106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Yeelimite is one of the main components of SulfoBelite (SB) and Calcium SulfoAluminate cements which are promising low carbon alternatives to Portland ones. In this study, stoichiometric yeelimite, obtained at different temperatures, was characterized by XRD, Q-XRD and SEM-EDS. Additionally, mortars of the synthetic yeelimite, with and without standard sand, were studied in terms of the development of strength over time. The main result is that high yeelimite content samples were prepared by mixing stoichiometric quantities of analytical-grade raw materials at 1330 °C for 3 h soaking time, followed by rapid cooling. Moreover, an increase in the formed yeelimite results in increased strength values that meet the requirements to be classified at CEM 32.5.