RESEARCH OF MULTI-TASK LEARNING BASED ON EXTREME LEARNING MACHINE

IF 1 4区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE International Journal of Uncertainty Fuzziness and Knowledge-Based Systems Pub Date : 2013-10-31 DOI:10.1142/S0218488513400175
Wentao Mao, Jiucheng Xu, Shengjie Zhao, Mei Tian
{"title":"RESEARCH OF MULTI-TASK LEARNING BASED ON EXTREME LEARNING MACHINE","authors":"Wentao Mao, Jiucheng Xu, Shengjie Zhao, Mei Tian","doi":"10.1142/S0218488513400175","DOIUrl":null,"url":null,"abstract":"Recently, extreme learning machines (ELMs) have been a promising tool in solving a wide range of regression and classification applications. However, when modeling multiple related tasks in which only limited training data per task are available and the dimension is low, ELMs are generally hard to get impressive performance due to little help from the informative domain knowledge across tasks. To solve this problem, this paper extends ELM to the scenario of multi-task learning (MTL). First, based on the assumption that model parameters of related tasks are close to each other, a new regularization-based MTL algorithm for ELM is proposed to learn related tasks jointly via simple matrix inversion. For improving the learning performance, the algorithm proposed above is further formulated as a mixed integer programming in order to identify the grouping structure in which parameters are closer than others, and finally an alternating minimization method is presented to solve this optimization. Experiments conducted on a toy problem as well as real-life data set demonstrate the effectiveness of the proposed MTL algorithm compared to the classical ELM and the standard MTL algorithm.","PeriodicalId":50283,"journal":{"name":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","volume":"19 1","pages":"75-85"},"PeriodicalIF":1.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Uncertainty Fuzziness and Knowledge-Based Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1142/S0218488513400175","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 4

Abstract

Recently, extreme learning machines (ELMs) have been a promising tool in solving a wide range of regression and classification applications. However, when modeling multiple related tasks in which only limited training data per task are available and the dimension is low, ELMs are generally hard to get impressive performance due to little help from the informative domain knowledge across tasks. To solve this problem, this paper extends ELM to the scenario of multi-task learning (MTL). First, based on the assumption that model parameters of related tasks are close to each other, a new regularization-based MTL algorithm for ELM is proposed to learn related tasks jointly via simple matrix inversion. For improving the learning performance, the algorithm proposed above is further formulated as a mixed integer programming in order to identify the grouping structure in which parameters are closer than others, and finally an alternating minimization method is presented to solve this optimization. Experiments conducted on a toy problem as well as real-life data set demonstrate the effectiveness of the proposed MTL algorithm compared to the classical ELM and the standard MTL algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于极限学习机的多任务学习研究
最近,极限学习机(elm)在解决广泛的回归和分类应用方面已经成为一种很有前途的工具。然而,当建模多个相关任务时,每个任务可用的训练数据有限且维度较低,由于缺乏跨任务的信息领域知识的帮助,elm通常难以获得令人印象深刻的性能。为了解决这一问题,本文将ELM扩展到多任务学习场景。首先,基于相关任务的模型参数相互接近的假设,提出了一种新的基于正则化的ELM MTL算法,通过简单的矩阵反演对相关任务进行联合学习。为了提高学习性能,将上述算法进一步表述为混合整数规划,以识别参数更接近的分组结构,最后提出了一种交替最小化方法来解决这一优化问题。在玩具问题和现实数据集上进行的实验表明,与经典ELM和标准MTL算法相比,所提出的MTL算法是有效的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
48
审稿时长
13.5 months
期刊介绍: The International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems is a forum for research on various methodologies for the management of imprecise, vague, uncertain or incomplete information. The aim of the journal is to promote theoretical or methodological works dealing with all kinds of methods to represent and manipulate imperfectly described pieces of knowledge, excluding results on pure mathematics or simple applications of existing theoretical results. It is published bimonthly, with worldwide distribution to researchers, engineers, decision-makers, and educators.
期刊最新文献
A Structure-Enhanced Heterogeneous Graph Representation Learning with Attention-Supplemented Embedding Fusion Homogenous Ensembles of Neuro-Fuzzy Classifiers using Hyperparameter Tuning for Medical Data PSO Based Constraint Optimization of Intuitionistic Fuzzy Shortest Path Problem in an Undirected Network Model Predictive Control for Interval Type-2 Fuzzy Systems with Unknown Time-Varying Delay in States and Input Vector An OWA Based MCDM Framework for Analyzing Multidimensional Twitter Data: A Case Study on the Citizen-Government Engagement During COVID-19
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1