Irrationality or Efficiency of Macroeconomic Survey Forecasts? Implications from the Anchoring Bias Test

D. Hess, Sebastian Orbe
{"title":"Irrationality or Efficiency of Macroeconomic Survey Forecasts? Implications from the Anchoring Bias Test","authors":"D. Hess, Sebastian Orbe","doi":"10.2139/ssrn.1669587","DOIUrl":null,"url":null,"abstract":"We analyze the quality of macroeconomic survey forecasts. Recent findings indicate that they are anchoring biased. This irrationality would challenge the results of a wide range of empirical studies, e.g., in asset pricing, volatility clustering or market liquidity, which rely on survey data to capture market participants' expectations. We contribute to the existing literature in two ways. First, we show that the cognitive bias is a statistical artifact. Despite highly significant anchoring coefficients a bias adjustment does not improve forecasts' quality. To explain this counterintuitive result we take a closer look at macroeconomic analysts' information processing abilities. We find that analysts benefit from the use of an extensive information set, neglected in the anchoring bias test. Exactly this information advantage drives the misleading anchoring bias test results. Second, we find that the superior information aggregation capabilities enable analysts to easily outperform sophisticated timeseries forecasts and therefore survey forecasts should clearly be favored.","PeriodicalId":11485,"journal":{"name":"Econometrics: Applied Econometrics & Modeling eJournal","volume":"5 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2012-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Applied Econometrics & Modeling eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.1669587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31

Abstract

We analyze the quality of macroeconomic survey forecasts. Recent findings indicate that they are anchoring biased. This irrationality would challenge the results of a wide range of empirical studies, e.g., in asset pricing, volatility clustering or market liquidity, which rely on survey data to capture market participants' expectations. We contribute to the existing literature in two ways. First, we show that the cognitive bias is a statistical artifact. Despite highly significant anchoring coefficients a bias adjustment does not improve forecasts' quality. To explain this counterintuitive result we take a closer look at macroeconomic analysts' information processing abilities. We find that analysts benefit from the use of an extensive information set, neglected in the anchoring bias test. Exactly this information advantage drives the misleading anchoring bias test results. Second, we find that the superior information aggregation capabilities enable analysts to easily outperform sophisticated timeseries forecasts and therefore survey forecasts should clearly be favored.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
宏观经济调查预测的不合理性还是有效性?锚定偏差检验的含义
我们分析了宏观经济调查预测的质量。最近的研究结果表明,他们有锚定偏见。这种非理性将挑战广泛的实证研究的结果,例如,在资产定价、波动聚类或市场流动性方面,这些研究依赖于调查数据来捕捉市场参与者的预期。我们以两种方式对现有文献做出贡献。首先,我们证明了认知偏差是一种统计伪像。尽管锚定系数非常显著,但偏差调整并不能提高预测的质量。为了解释这一反直觉的结果,我们仔细研究了宏观经济分析师的信息处理能力。我们发现分析人员受益于广泛的信息集的使用,在锚定偏差检验中被忽视。正是这种信息优势导致了误导性的锚定偏差测试结果。其次,我们发现优越的信息聚合能力使分析师能够轻松超越复杂的时间序列预测,因此调查预测显然应该受到青睐。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Discovering Causal Models with Optimization: Confounders, Cycles, and Feature Selection Improving the Wisdom of Crowds with Analysis of Variance of Predictions of Related Outcomes Canonical Correlation-based Model Selection for the Multilevel Factors Robust Forecasting Resurrecting the Size Effect: Firm Size, Profitability Shocks, and Expected Stock Returns
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1