V. Pashchenko, O. Bludov, D. Baltrunas, K. Mažeika, S. Motria, K. Glukhov, Y. Vysochanskii
{"title":"The antiferromagnetic phase transition in the layered Cu0.15Fe0.85PS3 semiconductor: experiment and DFT modelling","authors":"V. Pashchenko, O. Bludov, D. Baltrunas, K. Mažeika, S. Motria, K. Glukhov, Y. Vysochanskii","doi":"10.5488/CMP.25.43701","DOIUrl":null,"url":null,"abstract":"The experimental studies of the paramagnetic-antiferromagnetic phase transition through Mössbauer spectroscopy and measurements of temperature and field dependencies of magnetic susceptibility in the layered Cu0.15Fe0.85PS3 crystal are presented. The peculiar behavior of the magnetization - field dependence at low-temperature region gives evidence of a weak ferromagnetism in the studied alloy. By the ab initio simulation of electronic and spin subsystems, in the framework of electron density functional theory, the peculiarities of spin ordering at low temperature as well as changes in interatomic interactions in the vicinity of the Cu substitutional atoms are analyzed. The calculated components of the electric field gradient tensor and asymmetry parameter for Fe ions are close to the ones found from Mössbauer spectra values. The Mulliken populations show that the main contribution to the ferromagnetic spin density is originated from 3d-copper and 3p-sulfur orbitals. The estimated total magnetic moment of the unit cell (8.543 emu/mol) is in reasonable agreement with the measured experimental value of ∼9 emu/mol.","PeriodicalId":10528,"journal":{"name":"Condensed Matter Physics","volume":"8 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2023-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Condensed Matter Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.5488/CMP.25.43701","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0
Abstract
The experimental studies of the paramagnetic-antiferromagnetic phase transition through Mössbauer spectroscopy and measurements of temperature and field dependencies of magnetic susceptibility in the layered Cu0.15Fe0.85PS3 crystal are presented. The peculiar behavior of the magnetization - field dependence at low-temperature region gives evidence of a weak ferromagnetism in the studied alloy. By the ab initio simulation of electronic and spin subsystems, in the framework of electron density functional theory, the peculiarities of spin ordering at low temperature as well as changes in interatomic interactions in the vicinity of the Cu substitutional atoms are analyzed. The calculated components of the electric field gradient tensor and asymmetry parameter for Fe ions are close to the ones found from Mössbauer spectra values. The Mulliken populations show that the main contribution to the ferromagnetic spin density is originated from 3d-copper and 3p-sulfur orbitals. The estimated total magnetic moment of the unit cell (8.543 emu/mol) is in reasonable agreement with the measured experimental value of ∼9 emu/mol.
期刊介绍:
Condensed Matter Physics contains original and review articles in the field of statistical mechanics and thermodynamics of equilibrium and nonequilibrium processes, relativistic mechanics of interacting particle systems.The main attention is paid to physics of solid, liquid and amorphous systems, phase equilibria and phase transitions, thermal, structural, electric, magnetic and optical properties of condensed matter. Condensed Matter Physics is published quarterly.