Sieve BLP: A Semi-Nonparametric Model of Demand for Differentiated Products

Ao Wang
{"title":"Sieve BLP: A Semi-Nonparametric Model of Demand for Differentiated Products","authors":"Ao Wang","doi":"10.2139/ssrn.3569077","DOIUrl":null,"url":null,"abstract":"We develop a semi-nonparametric approach to identify and estimate the demand for differentiated products. The proposed method adopts a random coefficients discrete choice logit model (i.e., mixed logit model) in which the distribution of random coefficients is nonparametrically specified. Our method minimizes misspecification error in this distribution to which routinely used parametric approach is subject. In addition, it overcomes the practical challenge of dimensionality in the number of products that remains the main hurdle in the nonparametric estimation of demand functions. We propose a sieve estimation procedure (referred to as sieve BLP) that remains simple to implement. Extensive Monte Carlo simulations show its robust finite-sample performance under various data generating processes. We use our method to investigate the welfare implications of a sugar tax in the ready-to-eat cereal industry in the US. This application underscores the usefulness of sieve BLP due to its ability to allow for flexibly specified individual heterogeneity in demand, especially when the researcher aims to quantify the distributional effects of a policy change.","PeriodicalId":11465,"journal":{"name":"Econometrics: Econometric & Statistical Methods - General eJournal","volume":"106 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics: Econometric & Statistical Methods - General eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3569077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We develop a semi-nonparametric approach to identify and estimate the demand for differentiated products. The proposed method adopts a random coefficients discrete choice logit model (i.e., mixed logit model) in which the distribution of random coefficients is nonparametrically specified. Our method minimizes misspecification error in this distribution to which routinely used parametric approach is subject. In addition, it overcomes the practical challenge of dimensionality in the number of products that remains the main hurdle in the nonparametric estimation of demand functions. We propose a sieve estimation procedure (referred to as sieve BLP) that remains simple to implement. Extensive Monte Carlo simulations show its robust finite-sample performance under various data generating processes. We use our method to investigate the welfare implications of a sugar tax in the ready-to-eat cereal industry in the US. This application underscores the usefulness of sieve BLP due to its ability to allow for flexibly specified individual heterogeneity in demand, especially when the researcher aims to quantify the distributional effects of a policy change.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
筛选BLP:差异化产品需求的半非参数模型
我们开发了一种半非参数方法来识别和估计差异化产品的需求。该方法采用随机系数离散选择logit模型(即混合logit模型),其中随机系数的分布是非参数指定的。我们的方法最大限度地减少了这种分布中的误规范误差,而通常使用参数方法是受此影响的。此外,它克服了产品数量维度的实际挑战,这仍然是需求函数非参数估计的主要障碍。我们提出了一个筛估计过程(称为筛BLP),它仍然易于实现。大量的蒙特卡罗模拟表明,该方法在各种数据生成过程中具有鲁棒的有限样本性能。我们用我们的方法来调查在美国即食谷物行业糖税的福利影响。这种应用强调了筛BLP的实用性,因为它能够灵活地指定需求中的个体异质性,特别是当研究人员旨在量化政策变化的分配效应时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hawkes-driven stochastic volatility models: goodness-of-fit testing of alternative intensity specifications with S&P500 data Identification of Factor Risk Premia Herding in Probabilistic Forecasts Efficient Bias Robust Cross Section Factor Models Multi-factor, Age-Cohort, Affine Mortality Models: A Multi-Country Comparison
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1