A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data

Fuqiang Yu, Li-zhen Cui, Wei Guo, Xudong Lu, Qingzhong Li, Hua Lu
{"title":"A Category-Aware Deep Model for Successive POI Recommendation on Sparse Check-in Data","authors":"Fuqiang Yu, Li-zhen Cui, Wei Guo, Xudong Lu, Qingzhong Li, Hua Lu","doi":"10.1145/3366423.3380202","DOIUrl":null,"url":null,"abstract":"As considerable amounts of POI check-in data have been accumulated, successive point-of-interest (POI) recommendation is increasingly popular. Existing successive POI recommendation methods only predict where user will go next, ignoring when this behavior will occur. In this work, we focus on predicting POIs that will be visited by users in the next 24 hours. As check-in data is very sparse, it is challenging to accurately capture user preferences in temporal patterns. To this end, we propose a category-aware deep model CatDM that incorporates POI category and geographical influence to reduce search space to overcome data sparsity. We design two deep encoders based on LSTM to model the time series data. The first encoder captures user preferences in POI categories, whereas the second exploits user preferences in POIs. Considering clock influence in the second encoder, we divide each user’s check-in history into several different time windows and develop a personalized attention mechanism for each window to facilitate CatDM to exploit temporal patterns. Moreover, to sort the candidate set, we consider four specific dependencies: user-POI, user-category, POI-time and POI-user current preferences. Extensive experiments are conducted on two large real datasets. The experimental results demonstrate that our CatDM outperforms the state-of-the-art models for successive POI recommendation on sparse check-in data.","PeriodicalId":20754,"journal":{"name":"Proceedings of The Web Conference 2020","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of The Web Conference 2020","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3366423.3380202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

Abstract

As considerable amounts of POI check-in data have been accumulated, successive point-of-interest (POI) recommendation is increasingly popular. Existing successive POI recommendation methods only predict where user will go next, ignoring when this behavior will occur. In this work, we focus on predicting POIs that will be visited by users in the next 24 hours. As check-in data is very sparse, it is challenging to accurately capture user preferences in temporal patterns. To this end, we propose a category-aware deep model CatDM that incorporates POI category and geographical influence to reduce search space to overcome data sparsity. We design two deep encoders based on LSTM to model the time series data. The first encoder captures user preferences in POI categories, whereas the second exploits user preferences in POIs. Considering clock influence in the second encoder, we divide each user’s check-in history into several different time windows and develop a personalized attention mechanism for each window to facilitate CatDM to exploit temporal patterns. Moreover, to sort the candidate set, we consider four specific dependencies: user-POI, user-category, POI-time and POI-user current preferences. Extensive experiments are conducted on two large real datasets. The experimental results demonstrate that our CatDM outperforms the state-of-the-art models for successive POI recommendation on sparse check-in data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
稀疏检入数据上连续POI推荐的类别感知深度模型
随着大量的POI签入数据的积累,连续的兴趣点(POI)建议越来越受欢迎。现有的连续POI推荐方法只预测用户下一步将去哪里,而忽略了这种行为何时发生。在这项工作中,我们专注于预测用户在未来24小时内将访问的poi。由于签入数据非常稀疏,因此在时间模式中准确捕获用户偏好是一项挑战。为此,我们提出了一种包含POI类别和地理影响的类别感知深度模型CatDM,以减少搜索空间,克服数据稀疏性。我们设计了两个基于LSTM的深度编码器来对时间序列数据建模。第一个编码器捕获POI类别中的用户首选项,而第二个编码器利用POI中的用户首选项。考虑到第二个编码器的时钟影响,我们将每个用户的签到历史划分为几个不同的时间窗口,并为每个窗口开发个性化的注意力机制,以促进CatDM利用时间模式。此外,为了对候选集进行排序,我们考虑了四种特定的依赖关系:用户- poi、用户类别、poi时间和poi用户当前偏好。在两个大型真实数据集上进行了大量的实验。实验结果表明,我们的CatDM在稀疏签入数据上的连续POI推荐方面优于最先进的模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Gone, Gone, but Not Really, and Gone, But Not forgotten: A Typology of Website Recoverability Those who are left behind: A chronicle of internet access in Cuba Towards Automated Technologies in the Referencing Quality of Wikidata Companion of The Web Conference 2022, Virtual Event / Lyon, France, April 25 - 29, 2022 WWW '21: The Web Conference 2021, Virtual Event / Ljubljana, Slovenia, April 19-23, 2021
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1