Efficient Dynamic Analysis of Low-similarity Proteins for Structural Class Prediction

M. Zervou, E. Doutsi, P. Pavlidis, P. Tsakalides
{"title":"Efficient Dynamic Analysis of Low-similarity Proteins for Structural Class Prediction","authors":"M. Zervou, E. Doutsi, P. Pavlidis, P. Tsakalides","doi":"10.23919/Eusipco47968.2020.9287619","DOIUrl":null,"url":null,"abstract":"Prediction of protein structural classes from amino acid sequences is a challenging problem as it is profitable for analyzing protein function, interactions, and regulation. The majority of existing prediction methods for low-homology sequences utilize numerous amount of features and require an exhausting search for optimal parameter tuning. To address this problem, this work proposes a novel self-tuned architecture for feature extraction by modeling directly the inherent dynamics of the data in higher-dimensional phase space via chaos game representation (CGR) and generalized multidimensional recurrence quantification analysis (GmdRQA). Experimental evaluation on a real benchmark dataset demonstrates the superiority of the herein proposed architecture when compared against the state-of-the-art unidimensional RQA taking under consideration that our method achieves similar performance in a data-driven manner with a smaller computational cost.","PeriodicalId":6705,"journal":{"name":"2020 28th European Signal Processing Conference (EUSIPCO)","volume":"55 1","pages":"1328-1332"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 28th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/Eusipco47968.2020.9287619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Prediction of protein structural classes from amino acid sequences is a challenging problem as it is profitable for analyzing protein function, interactions, and regulation. The majority of existing prediction methods for low-homology sequences utilize numerous amount of features and require an exhausting search for optimal parameter tuning. To address this problem, this work proposes a novel self-tuned architecture for feature extraction by modeling directly the inherent dynamics of the data in higher-dimensional phase space via chaos game representation (CGR) and generalized multidimensional recurrence quantification analysis (GmdRQA). Experimental evaluation on a real benchmark dataset demonstrates the superiority of the herein proposed architecture when compared against the state-of-the-art unidimensional RQA taking under consideration that our method achieves similar performance in a data-driven manner with a smaller computational cost.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低相似性蛋白的高效动态分析用于结构分类预测
从氨基酸序列预测蛋白质的结构类别是一个具有挑战性的问题,因为它有利于分析蛋白质的功能、相互作用和调节。大多数现有的低同源序列预测方法利用了大量的特征,需要耗费大量的精力来寻找最优的参数调整。为了解决这个问题,本研究提出了一种新的自调结构,通过混沌博弈表示(CGR)和广义多维递归量化分析(GmdRQA)直接建模高维相空间中数据的内在动态,用于特征提取。在真实基准数据集上的实验评估表明,与最先进的一维RQA相比,本文提出的架构具有优越性,考虑到我们的方法以数据驱动的方式以更小的计算成本实现了类似的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Eusipco 2021 Cover Page A graph-theoretic sensor-selection scheme for covariance-based Motor Imagery (MI) decoding Hidden Markov Model Based Data-driven Calibration of Non-dispersive Infrared Gas Sensor Deep Transform Learning for Multi-Sensor Fusion Two Stages Parallel LMS Structure: A Pipelined Hardware Architecture
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1