Strategic Supplier Selection in Payment Industry: A Multi-Criteria Solution for Insufficient and Interrelated Data Sources

S. Hekmat, M. Amiri, Golshan Madraki
{"title":"Strategic Supplier Selection in Payment Industry: A Multi-Criteria Solution for Insufficient and Interrelated Data Sources","authors":"S. Hekmat, M. Amiri, Golshan Madraki","doi":"10.1142/s0219622021500474","DOIUrl":null,"url":null,"abstract":"Our goal is to address the complicated problem of strategic supplier selection with interrelated and insufficient data. To achieve this goal, we proposed our Strategic Supplier Selection Methodology (SSSM). First, SSSM formulates the enterprise strategies and evaluation criteria. Then, we developed a novel method called Grey Principal Component Analysis-Data Envelopment Analysis (GPCA-DEA) to evaluate suppliers in SSSM. GPCA-DEA overcomes the major disadvantages and limitations of former methodologies (e.g., DEA) while dealing with insufficient and interrelated data. Finally, SSSM applies Multiple Attribute Decision-Making (MADM) methods to select suppliers based on the ranking score. The application of SSSM is illustrated in the payment industry to select Payment Initiation Service Providers (PISP). For the first time, we considered the payment industry-specific criteria in compliance with the latest regulation (PSD2). The Spearman rank correlation statistical test showed that our method (GPCA-DEA used in SSSM) yields more reliable results than a former version of DEA.","PeriodicalId":13527,"journal":{"name":"Int. J. Inf. Technol. Decis. Mak.","volume":"38 1","pages":"1711-1745"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Technol. Decis. Mak.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0219622021500474","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Our goal is to address the complicated problem of strategic supplier selection with interrelated and insufficient data. To achieve this goal, we proposed our Strategic Supplier Selection Methodology (SSSM). First, SSSM formulates the enterprise strategies and evaluation criteria. Then, we developed a novel method called Grey Principal Component Analysis-Data Envelopment Analysis (GPCA-DEA) to evaluate suppliers in SSSM. GPCA-DEA overcomes the major disadvantages and limitations of former methodologies (e.g., DEA) while dealing with insufficient and interrelated data. Finally, SSSM applies Multiple Attribute Decision-Making (MADM) methods to select suppliers based on the ranking score. The application of SSSM is illustrated in the payment industry to select Payment Initiation Service Providers (PISP). For the first time, we considered the payment industry-specific criteria in compliance with the latest regulation (PSD2). The Spearman rank correlation statistical test showed that our method (GPCA-DEA used in SSSM) yields more reliable results than a former version of DEA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
支付行业供应商战略选择:数据来源不足和相互关联的多准则解决方案
我们的目标是在数据相互关联和不充分的情况下解决复杂的战略供应商选择问题。为了实现这一目标,我们提出了战略供应商选择方法(SSSM)。首先,SSSM制定企业战略和评价标准。然后,我们开发了一种新的方法,称为灰色主成分分析-数据包络分析(GPCA-DEA)来评估SSSM中的供应商。GPCA-DEA在处理不充分和相互关联的数据时克服了以前的方法(例如DEA)的主要缺点和局限性。最后,SSSM应用多属性决策(MADM)方法,根据排名分数选择供应商。并举例说明了SSSM在支付行业中选择支付发起服务提供商(PISP)的应用。我们第一次考虑了符合最新法规(PSD2)的支付行业特定标准。Spearman秩相关统计检验表明,我们的方法(在SSSM中使用GPCA-DEA)比以前的DEA版本产生更可靠的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Guest Editors' Introduction for the Special Issue on The Role of Decision Making to Overcome COVID-19 The Behavioral TOPSIS Based on Prospect Theory and Regret Theory Instigating the Sailfish Optimization Algorithm Based on Opposition-Based Learning to Determine the Salient Features From a High-Dimensional Dataset Optimized Deep Learning-Enabled Hybrid Logistic Piece-Wise Chaotic Map for Secured Medical Data Storage System A Typology Scheme for the Criteria Weighting Methods in MADM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1