{"title":"Simulation of the Dynamics of Supersonic N-Crowdions in fcc Lead and Nickel","authors":"A. Bayazitov, A. Semenov, S. V. Dmitriev","doi":"10.3390/micro3030044","DOIUrl":null,"url":null,"abstract":"In the case where an interstitial atom is located in a close-packed atomic row of the crystal lattice, it is called a crowdion. Crowdions play an important role in the processes of mass and energy transfer resulting from irradiation, severe plastic deformation, ion implantation, plasma and laser processing, etc. In this work, supersonic N-crowdions (N=1, 2) in fcc lattices of lead and nickel are studied by the method of molecular dynamics. Modeling shows that the propagation distance of a supersonic 2-crowdion in lead at a high initial velocity is less than that of a supersonic 1-crowdion. In other fcc metals studied, including nickel, supersonic 2-crowdions have a longer propagation distance than 1-crowdions. The relatively short propagation distance of supersonic 2-crowdions in lead is due to their instability and rapid transformation into supersonic 1-crowdions. This feature of the dynamics of supersonic N-crowdions in lead explains its high radiation-shielding properties.","PeriodicalId":18398,"journal":{"name":"Micro & Nano Letters","volume":"8 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2023-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Micro & Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.3390/micro3030044","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In the case where an interstitial atom is located in a close-packed atomic row of the crystal lattice, it is called a crowdion. Crowdions play an important role in the processes of mass and energy transfer resulting from irradiation, severe plastic deformation, ion implantation, plasma and laser processing, etc. In this work, supersonic N-crowdions (N=1, 2) in fcc lattices of lead and nickel are studied by the method of molecular dynamics. Modeling shows that the propagation distance of a supersonic 2-crowdion in lead at a high initial velocity is less than that of a supersonic 1-crowdion. In other fcc metals studied, including nickel, supersonic 2-crowdions have a longer propagation distance than 1-crowdions. The relatively short propagation distance of supersonic 2-crowdions in lead is due to their instability and rapid transformation into supersonic 1-crowdions. This feature of the dynamics of supersonic N-crowdions in lead explains its high radiation-shielding properties.
期刊介绍:
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in miniature and ultraminiature structures and systems. With an average of six weeks to decision, and publication online in advance of each issue, Micro & Nano Letters offers a rapid route for the international dissemination of high quality research findings from both the micro and nano communities.
Scope
Micro & Nano Letters offers express online publication of short research papers containing the latest advances in micro and nano-scale science, engineering and technology, with at least one dimension ranging from micrometers to nanometers. Micro & Nano Letters offers readers high-quality original research from both the micro and nano communities, and the materials and devices communities.
Bridging this gap between materials science and micro and nano-scale devices, Micro & Nano Letters addresses issues in the disciplines of engineering, physical, chemical, and biological science. It places particular emphasis on cross-disciplinary activities and applications.
Typical topics include:
Micro and nanostructures for the device communities
MEMS and NEMS
Modelling, simulation and realisation of micro and nanoscale structures, devices and systems, with comparisons to experimental data
Synthesis and processing
Micro and nano-photonics
Molecular machines, circuits and self-assembly
Organic and inorganic micro and nanostructures
Micro and nano-fluidics