Effect of Stemming on Hindi Text Classification

Dr. Anjusha Pimpalshende, Preety Singh, Dr. Archana Potnurwar
{"title":"Effect of Stemming on Hindi Text Classification","authors":"Dr. Anjusha Pimpalshende, Preety Singh, Dr. Archana Potnurwar","doi":"10.47164/ijngc.v14i1.1063","DOIUrl":null,"url":null,"abstract":"Abstract.  Text classification is very useful to search large amount of textual data available online by dividing it into smaller relevant units. Now a day’s large amount of digital documents are available in Indian languages. Designing text classifiers in Indian languages is one of the research areas so that people can search and read required documents in their local languages. In proposed work tried to design Text classifier for Hindi text documents and tried to show how stemmer affects the performance of Hindi text classifiers. Stemming is a process to convert words in any language to its base or root words. Stemmers are used for written documents not for spoken languages. Performance of many applications such as text summarization, Information Retrieval (IR) system,text classification systems, syntactic parsing can be improved by applying stemmers. Stemmer eliminates suffix or prefix of the word and form original root word. These root words helps in the preprocessing step required in many algorithms. We applied various stemmers on Hindi text classification models. Experiments and results show that performance of the classifiers is improved by applying stemmers.","PeriodicalId":42021,"journal":{"name":"International Journal of Next-Generation Computing","volume":"40 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2023-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Next-Generation Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47164/ijngc.v14i1.1063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract.  Text classification is very useful to search large amount of textual data available online by dividing it into smaller relevant units. Now a day’s large amount of digital documents are available in Indian languages. Designing text classifiers in Indian languages is one of the research areas so that people can search and read required documents in their local languages. In proposed work tried to design Text classifier for Hindi text documents and tried to show how stemmer affects the performance of Hindi text classifiers. Stemming is a process to convert words in any language to its base or root words. Stemmers are used for written documents not for spoken languages. Performance of many applications such as text summarization, Information Retrieval (IR) system,text classification systems, syntactic parsing can be improved by applying stemmers. Stemmer eliminates suffix or prefix of the word and form original root word. These root words helps in the preprocessing step required in many algorithms. We applied various stemmers on Hindi text classification models. Experiments and results show that performance of the classifiers is improved by applying stemmers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
词干提取对印地语文本分类的影响
抽象的。文本分类是一种非常有用的方法,它可以将大量的在线文本数据划分成较小的相关单元。现在,每天大量的数字文件都有印度语言版本。设计印度语言的文本分类器是研究领域之一,以便人们可以用当地语言搜索和阅读所需的文档。在提议的工作中,试图为印地语文本文档设计文本分类器,并试图展示stemmer如何影响印地语文本分类器的性能。词干提取是将任何语言中的单词转换为其基础或词根的过程。词干用于书写文件而不是口语。系统的应用可以提高文本摘要、信息检索系统、文本分类系统、句法分析等应用的性能。词根去掉单词的后缀或前缀,形成原词根。这些词根有助于许多算法所需的预处理步骤。我们在印地语文本分类模型上应用了不同的词干。实验和结果表明,系统的应用提高了分类器的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Next-Generation Computing
International Journal of Next-Generation Computing COMPUTER SCIENCE, THEORY & METHODS-
自引率
66.70%
发文量
60
期刊最新文献
Integrating Smartphone Sensor Technology to Enhance Fine Motor and Working Memory Skills in Pediatric Obesity: A Gamified Approach Deep Learning based Semantic Segmentation for Buildings Detection from Remote Sensing Images Machine Learning-assisted Distance Based Residual Energy Aware Clustering Algorithm for Energy Efficient Information Dissemination in Urban VANETs High Utility Itemset Extraction using PSO with Online Control Parameter Calibration Alzheimer’s Disease Classification using Feature Enhanced Deep Convolutional Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1