{"title":"Near-optimal algorithm for dimension reduction","authors":"L. Buturovic","doi":"10.1109/ICPR.1992.201802","DOIUrl":null,"url":null,"abstract":"Dimension reduction is a process of transforming the multidimensional observations into low-dimensional space. In pattern recognition this process should not cause loss of classification accuracy. This goal is best accomplished using Bayes error as a criterion for dimension reduction. Since the criterion is not usable for practical purposes, the authors suggest the use of the k-nearest neighbor estimate of the Bayes error instead. They experimentally demonstrate the superior performance of the linear dimension reduction algorithm based on this criterion, as compared to the traditional techniques.<<ETX>>","PeriodicalId":34917,"journal":{"name":"模式识别与人工智能","volume":"8 1","pages":"401-404"},"PeriodicalIF":0.0000,"publicationDate":"1992-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"模式识别与人工智能","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/ICPR.1992.201802","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0
Abstract
Dimension reduction is a process of transforming the multidimensional observations into low-dimensional space. In pattern recognition this process should not cause loss of classification accuracy. This goal is best accomplished using Bayes error as a criterion for dimension reduction. Since the criterion is not usable for practical purposes, the authors suggest the use of the k-nearest neighbor estimate of the Bayes error instead. They experimentally demonstrate the superior performance of the linear dimension reduction algorithm based on this criterion, as compared to the traditional techniques.<>