Ad click prediction: a view from the trenches

H. B. McMahan, Gary Holt, D. Sculley, Michael Young, D. Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, D. Golovin, S. Chikkerur, Dan Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, J. Kubica
{"title":"Ad click prediction: a view from the trenches","authors":"H. B. McMahan, Gary Holt, D. Sculley, Michael Young, D. Ebner, Julian Grady, Lan Nie, Todd Phillips, Eugene Davydov, D. Golovin, S. Chikkerur, Dan Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, J. Kubica","doi":"10.1145/2487575.2488200","DOIUrl":null,"url":null,"abstract":"Predicting ad click-through rates (CTR) is a massive-scale learning problem that is central to the multi-billion dollar online advertising industry. We present a selection of case studies and topics drawn from recent experiments in the setting of a deployed CTR prediction system. These include improvements in the context of traditional supervised learning based on an FTRL-Proximal online learning algorithm (which has excellent sparsity and convergence properties) and the use of per-coordinate learning rates. We also explore some of the challenges that arise in a real-world system that may appear at first to be outside the domain of traditional machine learning research. These include useful tricks for memory savings, methods for assessing and visualizing performance, practical methods for providing confidence estimates for predicted probabilities, calibration methods, and methods for automated management of features. Finally, we also detail several directions that did not turn out to be beneficial for us, despite promising results elsewhere in the literature. The goal of this paper is to highlight the close relationship between theoretical advances and practical engineering in this industrial setting, and to show the depth of challenges that appear when applying traditional machine learning methods in a complex dynamic system.","PeriodicalId":20472,"journal":{"name":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"910","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2487575.2488200","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 910

Abstract

Predicting ad click-through rates (CTR) is a massive-scale learning problem that is central to the multi-billion dollar online advertising industry. We present a selection of case studies and topics drawn from recent experiments in the setting of a deployed CTR prediction system. These include improvements in the context of traditional supervised learning based on an FTRL-Proximal online learning algorithm (which has excellent sparsity and convergence properties) and the use of per-coordinate learning rates. We also explore some of the challenges that arise in a real-world system that may appear at first to be outside the domain of traditional machine learning research. These include useful tricks for memory savings, methods for assessing and visualizing performance, practical methods for providing confidence estimates for predicted probabilities, calibration methods, and methods for automated management of features. Finally, we also detail several directions that did not turn out to be beneficial for us, despite promising results elsewhere in the literature. The goal of this paper is to highlight the close relationship between theoretical advances and practical engineering in this industrial setting, and to show the depth of challenges that appear when applying traditional machine learning methods in a complex dynamic system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广告点击预测:从战壕的角度来看
预测广告点击率(CTR)是一个大规模的学习问题,对数十亿美元的在线广告行业至关重要。我们提出了案例研究和主题的选择,从最近的实验中得出,在部署CTR预测系统的设置。其中包括基于FTRL-Proximal在线学习算法(具有出色的稀疏性和收敛性)的传统监督学习背景下的改进,以及使用每坐标学习率。我们还探讨了现实世界系统中出现的一些挑战,这些挑战最初可能出现在传统机器学习研究领域之外。这些方法包括节省内存的有用技巧、评估和可视化性能的方法、为预测概率提供置信度估计的实用方法、校准方法以及自动管理特征的方法。最后,我们还详细介绍了几个对我们没有好处的方向,尽管在其他文献中有很好的结果。本文的目的是强调在这种工业环境中理论进步与实际工程之间的密切关系,并展示在复杂动态系统中应用传统机器学习方法时出现的挑战的深度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A general bootstrap performance diagnostic Flexible and robust co-regularized multi-domain graph clustering Beyond myopic inference in big data pipelines Constrained stochastic gradient descent for large-scale least squares problem Inferring distant-time location in low-sampling-rate trajectories
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1