An optimizing utility for Portfolio Selection based on Optimal values computed using ANN, NSGA-II and Machine learning technique

Chanchal Kumar, M. Doja
{"title":"An optimizing utility for Portfolio Selection based on Optimal values computed using ANN, NSGA-II and Machine learning technique","authors":"Chanchal Kumar, M. Doja","doi":"10.1109/ICPECA47973.2019.8975558","DOIUrl":null,"url":null,"abstract":"An optimizing utility for computing the values of derived economic factors of Portfolio selection is described in this paper. The significance of appropriate computing values of these factors has been felt because of the risk-constrained solution of portfolio selection. The classical Lagrangian multiplier method has been extended in the paper, using ANN and NSGA-II algorithm for computing weights used in the cost equations describing these economic factors. A mathematical formulation of the equations using portfolio selection parameters with computed values of weights is provided. A machine learning tool is given next for classifying values of coefficients of variations. Finally, a comparison of the ANN computations of weights with weights computed using NSGA-II is provided. This approach can be advantageous for the portfolio decision-making process.","PeriodicalId":6761,"journal":{"name":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","volume":"42 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Power Electronics, Control and Automation (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA47973.2019.8975558","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

An optimizing utility for computing the values of derived economic factors of Portfolio selection is described in this paper. The significance of appropriate computing values of these factors has been felt because of the risk-constrained solution of portfolio selection. The classical Lagrangian multiplier method has been extended in the paper, using ANN and NSGA-II algorithm for computing weights used in the cost equations describing these economic factors. A mathematical formulation of the equations using portfolio selection parameters with computed values of weights is provided. A machine learning tool is given next for classifying values of coefficients of variations. Finally, a comparison of the ANN computations of weights with weights computed using NSGA-II is provided. This approach can be advantageous for the portfolio decision-making process.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于ANN, NSGA-II和机器学习技术计算的最优值的投资组合选择优化实用程序
本文描述了一种计算组合选择中衍生经济因素值的优化效用。由于投资组合选择的风险约束解决方案,这些因素的适当计算值的重要性已经被感受到。本文对经典的拉格朗日乘数法进行了扩展,使用人工神经网络和NSGA-II算法计算描述这些经济因素的成本方程中所使用的权重。给出了利用组合选择参数计算权重值的方程的数学表达式。然后给出了一种机器学习工具,用于对变异系数值进行分类。最后,将人工神经网络的权重计算与NSGA-II的权重计算进行了比较。这种方法对于投资组合决策过程是有利的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Direct Power Control of Dual Active Bridge Bidirectional DC-DC Converter A Review of Omega Based Portfolio Optimization Control of Multilevel Inverter as Shunt Active Power Filter using Maximum Versoria Criterion Real Time Analysis of VFT for Asynchronous Power Flow Control using Typhoon HIL Comparison of Different Microstrip Patch Antennas with Proposed RMPA for Wireless Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1