Clustering algorithms to increase fairness in collegiate wrestling

IF 1.1 Q3 SOCIAL SCIENCES, MATHEMATICAL METHODS Journal of Quantitative Analysis in Sports Pub Date : 2022-06-01 DOI:10.1515/jqas-2020-0101
N. Carter, A. Harrison, Amar Iyengar, M. Lanham, Scott T. Nestler, Dave Schrader, Amir Zadeh
{"title":"Clustering algorithms to increase fairness in collegiate wrestling","authors":"N. Carter, A. Harrison, Amar Iyengar, M. Lanham, Scott T. Nestler, Dave Schrader, Amir Zadeh","doi":"10.1515/jqas-2020-0101","DOIUrl":null,"url":null,"abstract":"Abstract In NCAA Division III Wrestling, the question arose how to assign schools to regions in a way that optimizes fairness for individual wrestlers aspiring to the national tournament. The problem fell within cluster analysis but no known clustering algorithms supported its complex and interrelated set of needs. We created several bespoke clustering algorithms based on various heuristics (balanced optimization, weighted spatial clustering, and weighted optimization rectangles) for finding an optimal assignment, and tested each against the generic technique of genetic algorithms. While each of our algorithms had different strengths, the genetic algorithm achieved the highest value on our objective function, including when comparing it to the region assignments that preceded our work. This paper therefore demonstrates a technique that can be used to solve a broad category of clustering problems that arise in athletics, particularly any sport in which athletes compete individually but are assigned to regions as a team.","PeriodicalId":16925,"journal":{"name":"Journal of Quantitative Analysis in Sports","volume":"57 1","pages":"113 - 125"},"PeriodicalIF":1.1000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quantitative Analysis in Sports","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jqas-2020-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"SOCIAL SCIENCES, MATHEMATICAL METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In NCAA Division III Wrestling, the question arose how to assign schools to regions in a way that optimizes fairness for individual wrestlers aspiring to the national tournament. The problem fell within cluster analysis but no known clustering algorithms supported its complex and interrelated set of needs. We created several bespoke clustering algorithms based on various heuristics (balanced optimization, weighted spatial clustering, and weighted optimization rectangles) for finding an optimal assignment, and tested each against the generic technique of genetic algorithms. While each of our algorithms had different strengths, the genetic algorithm achieved the highest value on our objective function, including when comparing it to the region assignments that preceded our work. This paper therefore demonstrates a technique that can be used to solve a broad category of clustering problems that arise in athletics, particularly any sport in which athletes compete individually but are assigned to regions as a team.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高大学摔跤公平性的聚类算法
在NCAA三级摔跤比赛中,出现了一个问题,即如何将学校分配到地区,以优化个人摔跤运动员渴望参加全国锦标赛的公平性。这个问题属于聚类分析,但没有已知的聚类算法支持其复杂且相互关联的需求集。我们基于各种启发式(平衡优化、加权空间聚类和加权优化矩形)创建了几种定制的聚类算法,用于寻找最优分配,并针对遗传算法的通用技术对每种算法进行了测试。虽然我们的每个算法都有不同的优势,但遗传算法在我们的目标函数上实现了最高的价值,包括将其与我们工作之前的区域分配进行比较时。因此,本文展示了一种技术,可用于解决田径运动中出现的广泛类别的聚类问题,特别是任何运动员单独竞争但作为一个团队被分配到区域的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Quantitative Analysis in Sports
Journal of Quantitative Analysis in Sports SOCIAL SCIENCES, MATHEMATICAL METHODS-
CiteScore
2.00
自引率
12.50%
发文量
15
期刊介绍: The Journal of Quantitative Analysis in Sports (JQAS), an official journal of the American Statistical Association, publishes timely, high-quality peer-reviewed research on the quantitative aspects of professional and amateur sports, including collegiate and Olympic competition. The scope of application reflects the increasing demand for novel methods to analyze and understand data in the growing field of sports analytics. Articles come from a wide variety of sports and diverse perspectives, and address topics such as game outcome models, measurement and evaluation of player performance, tournament structure, analysis of rules and adjudication, within-game strategy, analysis of sporting technologies, and player and team ranking methods. JQAS seeks to publish manuscripts that demonstrate original ways of approaching problems, develop cutting edge methods, and apply innovative thinking to solve difficult challenges in sports contexts. JQAS brings together researchers from various disciplines, including statistics, operations research, machine learning, scientific computing, econometrics, and sports management.
期刊最新文献
Improving the aggregation and evaluation of NBA mock drafts A basketball paradox: exploring NBA team defensive efficiency in a positionless game Success factors in national team football: an analysis of the UEFA EURO 2020 An empirical Bayes approach for estimating skill models for professional darts players A comprehensive survey of the home advantage in American football
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1