Marco Maggipinto, Gian Antonio Susto, Federico Zocco, S. McLoone
{"title":"What are the Most Informative Data for Virtual Metrology? A use case on Multi-Stage Processes Fault Prediction","authors":"Marco Maggipinto, Gian Antonio Susto, Federico Zocco, S. McLoone","doi":"10.1109/COASE.2019.8842942","DOIUrl":null,"url":null,"abstract":"In recent years, Data intensive technologies have become widespread in semiconductor manufacturing. In particular, Virtual Metrology (VM) solutions had proliferated for quality, control and sampling optimization purposes. VM solutions provide estimations of costly measures from already available data, allowing cost reduction and increased throughput. While most of the literature in VM is focused on providing the most accurate methodological approach in terms of prediction accuracy, no work has previously investigated which are the most informative data for VM. This is particularly relevant since literature is divided between VM based on Optical Emission Spectroscopy (OES) and Key Parameter Indicators (KPI) data. In this work we provide a comparison of between VM based on OES and KPIs on a real case study related to a multi-stage modeling problem.","PeriodicalId":6695,"journal":{"name":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","volume":"77 1","pages":"1796-1801"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COASE.2019.8842942","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
In recent years, Data intensive technologies have become widespread in semiconductor manufacturing. In particular, Virtual Metrology (VM) solutions had proliferated for quality, control and sampling optimization purposes. VM solutions provide estimations of costly measures from already available data, allowing cost reduction and increased throughput. While most of the literature in VM is focused on providing the most accurate methodological approach in terms of prediction accuracy, no work has previously investigated which are the most informative data for VM. This is particularly relevant since literature is divided between VM based on Optical Emission Spectroscopy (OES) and Key Parameter Indicators (KPI) data. In this work we provide a comparison of between VM based on OES and KPIs on a real case study related to a multi-stage modeling problem.