{"title":"Prediction of concrete spall damage under blast: Neural approach with synthetic data","authors":"Saha Dauj","doi":"10.12989/CAC.2020.26.6.533","DOIUrl":null,"url":null,"abstract":"The prediction of spall response of reinforced concrete members like columns and slabs have been attempted by earlier researchers with analytical solutions, as well as with empirical models developed from data generated from physical or numerical experiments, with different degrees of success. In this article, compared to the empirical models, more versatile and accurate models are developed based on model-free approach of artificial neural network (ANN). Synthetic data extracted from the results of numerical experiments from literature have been utilized for the purpose of training and testing of the ANN models. For two concrete members, namely, slabs and columns, different sets of ANN models were developed, each of which proved to have definite advantages over the corresponding empirical model reported in literature. In case of slabs, for all three categories of spall, the ANN model results were superior to the empirical models as evaluated by the various performance metrics, such as correlation, root mean square error, mean absolute error, maximum overestimation and maximum underestimation. The ANN models for each category of column spall could handle three variables together: namely, depth, spacing of longitudinal and transverse reinforcement, as contrasted to the empirical models that handled one variable at a time, and at the same time yielded comparable performance. The application of the ANN models for spall prediction of concrete slabs \nand columns developed in this study has been discussed along with their limitations.","PeriodicalId":50625,"journal":{"name":"Computers and Concrete","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers and Concrete","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.12989/CAC.2020.26.6.533","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 3
Abstract
The prediction of spall response of reinforced concrete members like columns and slabs have been attempted by earlier researchers with analytical solutions, as well as with empirical models developed from data generated from physical or numerical experiments, with different degrees of success. In this article, compared to the empirical models, more versatile and accurate models are developed based on model-free approach of artificial neural network (ANN). Synthetic data extracted from the results of numerical experiments from literature have been utilized for the purpose of training and testing of the ANN models. For two concrete members, namely, slabs and columns, different sets of ANN models were developed, each of which proved to have definite advantages over the corresponding empirical model reported in literature. In case of slabs, for all three categories of spall, the ANN model results were superior to the empirical models as evaluated by the various performance metrics, such as correlation, root mean square error, mean absolute error, maximum overestimation and maximum underestimation. The ANN models for each category of column spall could handle three variables together: namely, depth, spacing of longitudinal and transverse reinforcement, as contrasted to the empirical models that handled one variable at a time, and at the same time yielded comparable performance. The application of the ANN models for spall prediction of concrete slabs
and columns developed in this study has been discussed along with their limitations.
期刊介绍:
Computers and Concrete is An International Journal that focuses on the computer applications in be considered suitable for publication in the journal.
The journal covers the topics related to computational mechanics of concrete and modeling of concrete structures including
plasticity
fracture mechanics
creep
thermo-mechanics
dynamic effects
reliability and safety concepts
automated design procedures
stochastic mechanics
performance under extreme conditions.