Camouflaged Adversarial Patch Attack on Object Detector

Jeong-Soo Kim, Hunmin Yang, Se-Yoon Oh
{"title":"Camouflaged Adversarial Patch Attack on Object Detector","authors":"Jeong-Soo Kim, Hunmin Yang, Se-Yoon Oh","doi":"10.9766/kimst.2023.26.1.044","DOIUrl":null,"url":null,"abstract":"Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.","PeriodicalId":17292,"journal":{"name":"Journal of the Korea Institute of Military Science and Technology","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Korea Institute of Military Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9766/kimst.2023.26.1.044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Adversarial attacks have received great attentions for their capacity to distract state-of-the-art neural networks by modifying objects in physical domain. Patch-based attack especially have got much attention for its optimization effectiveness and feasible adaptation to any objects to attack neural network-based object detectors. However, despite their strong attack performance, generated patches are strongly perceptible for humans, violating the fundamental assumption of adversarial examples. In this paper, we propose a camouflaged adversarial patch optimization method using military camouflage assessment metrics for naturalistic patch attacks. We also investigate camouflaged attack loss functions, applications of various camouflaged patches on army tank images, and validate the proposed approach with extensive experiments attacking Yolov5 detection model. Our methods produce more natural and realistic looking camouflaged patches while achieving competitive performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对目标检测器的伪装对抗补丁攻击
对抗性攻击能够通过改变物理域内的物体来分散最先进的神经网络,因此受到了广泛的关注。特别是基于补丁的攻击以其优化的有效性和对任意目标的适应性而受到了广泛的关注。然而,尽管它们具有很强的攻击性能,但生成的补丁对人类来说是很强的可感知性,这违反了对抗性示例的基本假设。在本文中,我们提出了一种基于军事伪装评估指标的伪装对抗补丁优化方法。我们还研究了伪装攻击损失函数,各种伪装补丁在陆军坦克图像上的应用,并通过攻击Yolov5检测模型的大量实验验证了所提出的方法。我们的方法产生更自然和逼真的伪装补丁,同时实现竞争性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Point Ahead Angle(PAA) Estimation and a Control Algorithm for Satellite-Pointing of the Ground Terminal in Satellite-to-Ground Optical Communication Semi-Supervised SAR Image Classification via Adaptive Threshold Selection A Simulator Development of Surface Warship Torpedo Defense System considering Bubble-Generating Wake Decoy Progressive Test and Evaluation Strategy for Verification of KF-X AESA Radar Development Characteristic Property of Combustion and Internal Ballistics of Triple-Based Propellant according to Particle Size of RDX
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1